找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos; A Program Collection Hans Jürgen Korsch,Hans-J?rg Jodl,Timo Hartmann Textbook 2008Latest edition Springer-Verlag Berlin Heidelberg 2

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 23:07:18 | 只看該作者
32#
發(fā)表于 2025-3-27 03:51:34 | 只看該作者
33#
發(fā)表于 2025-3-27 07:21:36 | 只看該作者
Metasomatic Transformation of Aggregates,n contrast to the more frequently discussed linear (i.e., atypical) harmonic oscillators. Here, numerical experiments are helpful for investigating the complex dynamics, in particular by means of Poincaré sections.
34#
發(fā)表于 2025-3-27 10:50:57 | 只看該作者
35#
發(fā)表于 2025-3-27 13:44:34 | 只看該作者
36#
發(fā)表于 2025-3-27 18:41:53 | 只看該作者
37#
發(fā)表于 2025-3-27 22:09:27 | 只看該作者
Formation of Mixed Crystals in Solutions,ionless motion of a particle on a plane billiard table bounded by a closed curve [2]–[7]. The limiting cases of strictly regular (.) and strictly irregular (. or .) systems can be illustrated, as well as the typical case, which shows a complicated mixture of regular and irregular behavior. The onset
38#
發(fā)表于 2025-3-28 05:58:25 | 只看該作者
Formation of Mixed Crystals in Solutions, this billiard (compare the discussion of billiard systems in Chap. 3 ) consists of two planes symmetrically inclined with respect to a constant (e.g., gravitational) force field. The particle is reflected elastically from these planes. For simplicity, we consider the motion to be two-dimensional. W
39#
發(fā)表于 2025-3-28 08:09:50 | 只看該作者
40#
發(fā)表于 2025-3-28 12:22:51 | 只看該作者
Formation of Mixed Crystals in Solutions,ecade. Most of this work has been devoted to bounded systems. More recently, however, irregular chaotic phenomena have also been observed and studied for open (scattering) systems. For recent reviews of chaotic scattering, see the articles by Eckhardt [1], Smilansky [2], and Blümel [3]. Chaotic dyna
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 05:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万载县| 德阳市| 西吉县| 高邮市| 许昌县| 井研县| 郸城县| 淮滨县| 武穴市| 固安县| 凤翔县| 贡嘎县| 汝州市| 富平县| 郎溪县| 堆龙德庆县| 林芝县| 乌拉特后旗| 类乌齐县| 海安县| 湖口县| 泸州市| 和龙市| 景洪市| 齐齐哈尔市| 高邑县| 龙南县| 望江县| 会同县| 兴业县| 桐乡市| 江北区| 淅川县| 玉溪市| 宜都市| 濮阳县| 肥东县| 灵台县| 双牌县| 平乡县| 长宁区|