找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos; A Program Collection Hans Jürgen Korsch,Hans-J?rg Jodl,Timo Hartmann Textbook 2008Latest edition Springer-Verlag Berlin Heidelberg 2

[復制鏈接]
樓主: 航天飛機
31#
發(fā)表于 2025-3-26 23:07:18 | 只看該作者
32#
發(fā)表于 2025-3-27 03:51:34 | 只看該作者
33#
發(fā)表于 2025-3-27 07:21:36 | 只看該作者
Metasomatic Transformation of Aggregates,n contrast to the more frequently discussed linear (i.e., atypical) harmonic oscillators. Here, numerical experiments are helpful for investigating the complex dynamics, in particular by means of Poincaré sections.
34#
發(fā)表于 2025-3-27 10:50:57 | 只看該作者
35#
發(fā)表于 2025-3-27 13:44:34 | 只看該作者
36#
發(fā)表于 2025-3-27 18:41:53 | 只看該作者
37#
發(fā)表于 2025-3-27 22:09:27 | 只看該作者
Formation of Mixed Crystals in Solutions,ionless motion of a particle on a plane billiard table bounded by a closed curve [2]–[7]. The limiting cases of strictly regular (.) and strictly irregular (. or .) systems can be illustrated, as well as the typical case, which shows a complicated mixture of regular and irregular behavior. The onset
38#
發(fā)表于 2025-3-28 05:58:25 | 只看該作者
Formation of Mixed Crystals in Solutions, this billiard (compare the discussion of billiard systems in Chap. 3 ) consists of two planes symmetrically inclined with respect to a constant (e.g., gravitational) force field. The particle is reflected elastically from these planes. For simplicity, we consider the motion to be two-dimensional. W
39#
發(fā)表于 2025-3-28 08:09:50 | 只看該作者
40#
發(fā)表于 2025-3-28 12:22:51 | 只看該作者
Formation of Mixed Crystals in Solutions,ecade. Most of this work has been devoted to bounded systems. More recently, however, irregular chaotic phenomena have also been observed and studied for open (scattering) systems. For recent reviews of chaotic scattering, see the articles by Eckhardt [1], Smilansky [2], and Blümel [3]. Chaotic dyna
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 08:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
太和县| 黔西| 和田市| 南宁市| 安岳县| 金门县| 石狮市| 屯留县| 杨浦区| 新宾| 巴青县| 成都市| 泰顺县| 吐鲁番市| 蒙城县| 集贤县| 林芝县| 奉贤区| 盐边县| 台南市| 新昌县| 文山县| 通辽市| 扶风县| 建德市| 牟定县| 博野县| 淅川县| 军事| 安图县| 龙门县| 改则县| 呼图壁县| 铜陵市| 额敏县| 菏泽市| 田阳县| 水城县| 广南县| 仁化县| 沿河|