找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos; A Program Collection H. J. Korsch,H.-J. Jodl Book 19941st edition Springer-Verlag Berlin Heidelberg 1994 Chaostheorie.Fractals.Frakt

[復(fù)制鏈接]
樓主: solidity
21#
發(fā)表于 2025-3-25 06:18:28 | 只看該作者
22#
發(fā)表于 2025-3-25 10:37:06 | 只看該作者
23#
發(fā)表于 2025-3-25 12:11:34 | 只看該作者
Book 19941st editiontudents in physics, mathematics, and engineering will find a thorough intoduction to fundamentals and applications in this field. Many numerical experiments and suggestions for further studies help the reader to become familiar with this fascinationg topic.
24#
發(fā)表于 2025-3-25 18:59:12 | 只看該作者
Nonlinear Dynamics and Deterministic Chaos,e book and are written at a level suitable for advanced undergraduate students. An understanding and interpretation of the numerical results is, however, impossible without a knowledge of the relevant theory.
25#
發(fā)表于 2025-3-25 21:37:43 | 只看該作者
Billiard Systems,t of chaos follows the so-called Poincaré scenario, i.e. the consecutive destruction of invariant tori for increasing deviation from integrability as described by the KAM-theory and the Poincaré-Birkhoff theorem discussed in Chap. 2.
26#
發(fā)表于 2025-3-26 02:26:42 | 只看該作者
27#
發(fā)表于 2025-3-26 05:12:43 | 只看該作者
28#
發(fā)表于 2025-3-26 09:41:23 | 只看該作者
29#
發(fā)表于 2025-3-26 14:02:31 | 只看該作者
https://doi.org/10.1007/978-3-642-37179-0e book and are written at a level suitable for advanced undergraduate students. An understanding and interpretation of the numerical results is, however, impossible without a knowledge of the relevant theory.
30#
發(fā)表于 2025-3-26 19:34:47 | 只看該作者
S.-H. Hyon,K. Jamshidi,Y. Ikadat of chaos follows the so-called Poincaré scenario, i.e. the consecutive destruction of invariant tori for increasing deviation from integrability as described by the KAM-theory and the Poincaré-Birkhoff theorem discussed in Chap. 2.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 16:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台州市| 淮安市| 慈溪市| 象山县| 新津县| 江油市| 广宗县| 谷城县| 龙泉市| 梁河县| 元氏县| 紫金县| 连州市| 加查县| 乐山市| 平塘县| 邛崃市| 海伦市| 上高县| 赤峰市| 大余县| 涪陵区| 钦州市| 自贡市| 寻乌县| 大港区| 石家庄市| 沙河市| 彰武县| 松江区| 曲松县| 高阳县| 勐海县| 肇东市| 武胜县| 普格县| 广宗县| 股票| 永嘉县| 婺源县| 佛山市|