找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos; Poincaré Seminar 201 Bertrand Duplantier,Stéphane Nonnenmacher,Vincent Book 2013 Springer Basel 2013 Riemann zeta-function.billiard

[復(fù)制鏈接]
樓主: Madison
11#
發(fā)表于 2025-3-23 10:46:02 | 只看該作者
https://doi.org/10.1007/978-3-0348-0697-8Riemann zeta-function; billiards; celestial mechanics; chaotic dynamos; quantum chaos; random matrix theo
12#
發(fā)表于 2025-3-23 14:49:22 | 只看該作者
13#
發(fā)表于 2025-3-23 20:38:10 | 只看該作者
1544-9998 ational lectures given at the Institut Henri Poincaré in ParThis twelfth volume in the Poincaré Seminar Series presents a complete and interdisciplinary perspective on the concept of Chaos, both in classical mechanics in its deterministic version, and in quantum mechanics. This book expounds some of
14#
發(fā)表于 2025-3-24 00:50:01 | 只看該作者
https://doi.org/10.1007/978-3-642-02890-8lent velocity field that involves a wide range of interacting scales, we observe that its dynamics results from a small number of interacting modes. We present a model that describes both periodic and random reversals of the magnetic field and compare it with the experimental results and direct numerical simulations.
15#
發(fā)表于 2025-3-24 04:32:00 | 只看該作者
pVT data of polyethylene in propane,gous formula that connects the Riemann zeros and the primes. We also review the role played by Random Matrix Theory in both quantum chaos and the theory of the zeta function. The parallels we review are conjectural and still far from being understood, but the ideas have led to substantial progress in both areas.
16#
發(fā)表于 2025-3-24 09:12:18 | 只看該作者
Chaotic Dynamos Generated by Fully Turbulent Flows,lent velocity field that involves a wide range of interacting scales, we observe that its dynamics results from a small number of interacting modes. We present a model that describes both periodic and random reversals of the magnetic field and compare it with the experimental results and direct numerical simulations.
17#
發(fā)表于 2025-3-24 12:51:31 | 只看該作者
18#
發(fā)表于 2025-3-24 16:00:16 | 只看該作者
The Lorenz Attractor, a Paradigm for Chaos,teps in the historical development of the concept of chaos in dynamical systems, from the mathematical point of view. Then, I would like to present the present status of the Lorenz attractor in the panorama of the theory, as we see it Today.
19#
發(fā)表于 2025-3-24 20:45:25 | 只看該作者
,Discrete Graphs – A Paradigm Model for Quantum Chaos,tics with random matrix theory, the role of cycles and their statistics, and percolation of level sets of the eigenvectors. These concepts will be explained and reviewed with reference to the original publications for further details.
20#
發(fā)表于 2025-3-25 02:57:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 22:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彭阳县| 阿拉善盟| 巴塘县| 米林县| 马关县| 塔城市| 巴林左旗| 六安市| 东乌| 湟中县| 扶余县| 尚义县| 镇远县| 芦溪县| 西宁市| 神池县| 宁强县| 永定县| 综艺| 伊通| 宽城| 武邑县| 平乐县| 盐亭县| 滕州市| 隆子县| 城市| 阿拉善左旗| 新津县| 福安市| 团风县| 新疆| 安平县| 章丘市| 佛山市| 双江| 青海省| 沂水县| 日土县| 湄潭县| 和田市|