找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Change Point Analysis for Time Series; Lajos Horváth,Gregory Rice Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusi

[復(fù)制鏈接]
樓主: 壓榨機(jī)
21#
發(fā)表于 2025-3-25 05:23:39 | 只看該作者
22#
發(fā)表于 2025-3-25 08:39:37 | 只看該作者
23#
發(fā)表于 2025-3-25 13:14:21 | 只看該作者
24#
發(fā)表于 2025-3-25 19:42:50 | 只看該作者
0172-7397 modern settings of high--dimensional, functional, and heterThis volume provides a comprehensive survey that covers various modern methods used for detecting and estimating change points in time series and their models. The book primarily focuses on asymptotic theory and practical applications of ch
25#
發(fā)表于 2025-3-25 22:54:58 | 只看該作者
26#
發(fā)表于 2025-3-26 00:50:41 | 只看該作者
27#
發(fā)表于 2025-3-26 08:09:15 | 只看該作者
Cumulative Sum Processes,ved data. As such, we begin by developing a comprehensive asymptotic theory for CUSUM processes under conditions that allow for serial dependence in the observations. This includes a careful analysis of how weights applied to the CUSUM process affect the limiting distribution of its functionals, and extensions to multivariate observations.
28#
發(fā)表于 2025-3-26 09:37:32 | 只看該作者
Regression Models,parametric regression model. In this case a change in the relationship may be characterized by a change in the model parameters. This chapter is devoted to the development of asymptotic methods to perform change point analysis in the context of regression models.
29#
發(fā)表于 2025-3-26 12:48:48 | 只看該作者
Change Point Analysis of the Mean,points in the series, the functionals of the CUSUM process that we have considered should be consistent in the sense that they diverge in probability to positive infinity as the sample size grows. One goal of this chapter is to carefully quantify the asymptotic behaviour of the CUSUM process in the presence of change points.
30#
發(fā)表于 2025-3-26 19:10:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐都县| 汝州市| 宜丰县| 杭锦旗| 大邑县| 罗山县| 宜兰市| 贵南县| 广昌县| 博白县| 图们市| 富锦市| 运城市| 华安县| 绥化市| 宁德市| 将乐县| 宜川县| 祁东县| 新巴尔虎右旗| 蓝山县| 贵港市| 确山县| 麻城市| 萍乡市| 达拉特旗| 辉南县| 深州市| 望谟县| 新余市| 黄石市| 那曲县| 余姚市| 墨江| 钦州市| 福泉市| 浮梁县| 上林县| 秦皇岛市| 乌恰县| 平湖市|