找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chain Conditions in Commutative Rings; Ali Benhissi Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license

[復(fù)制鏈接]
樓主: 極大
11#
發(fā)表于 2025-3-23 12:26:40 | 只看該作者
12#
發(fā)表于 2025-3-23 17:23:15 | 只看該作者
13#
發(fā)表于 2025-3-23 21:27:59 | 只看該作者
14#
發(fā)表于 2025-3-24 00:14:52 | 只看該作者
15#
發(fā)表于 2025-3-24 06:22:31 | 只看該作者
16#
發(fā)表于 2025-3-24 06:57:42 | 只看該作者
Strongly Hopfian, Endo-Noetherian, and Isonoetherian Rings,domorphism . of ., the sequence . .???. ..??… is stationary. The ring . is strongly Hopfian if it is strongly Hopfian as an .-module. This is also equivalent to the fact that for each .?∈?., the sequence .(.)???.(..)??… is stationary. In this chapter, we study this notion and its transfer to different extensions of a ring ..
17#
發(fā)表于 2025-3-24 11:12:30 | 只看該作者
Textbook 2022papers. The majority of chapters are self-contained, and all include detailed proofs, a wealth of examples and solved exercises, and a complete reference list. The topics covered include S-Noetherian, S-Artinian, Nonnil-Noetherian, and Strongly Hopfian properties on commutative rings and their trans
18#
發(fā)表于 2025-3-24 17:34:14 | 只看該作者
Textbook 2022fer to extensions such as polynomial and power series rings, and more. Though primarily intended for readers with a background in commutative rings, modules, polynomials and power series extension rings, the book can also be used as a reference guide to support graduate-level algebra courses, or as a starting point for further research.
19#
發(fā)表于 2025-3-24 22:18:58 | 只看該作者
20#
發(fā)表于 2025-3-25 01:48:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 00:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三原县| 通榆县| 临高县| 偃师市| 双鸭山市| 镇坪县| 谷城县| 泰和县| 柳林县| 梁河县| 巢湖市| 碌曲县| 曲阳县| 信阳市| 高陵县| 合川市| 梅河口市| 巴南区| 平定县| 宁化县| 堆龙德庆县| 浪卡子县| 明水县| 临沭县| 南岸区| 元阳县| 巴林右旗| 涟源市| 行唐县| 大余县| 潼南县| 札达县| 阿城市| 张家川| 武川县| 琼中| 晋城| 密山市| 信丰县| 新巴尔虎左旗| 漠河县|