找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cellular Neural Networks: Dynamics and Modelling; Angela Slavova Book 2003 Springer Science+Business Media Dordrecht 2003 information proc

[復(fù)制鏈接]
查看: 31582|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:38:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Cellular Neural Networks: Dynamics and Modelling
編輯Angela Slavova
視頻videohttp://file.papertrans.cn/224/223051/223051.mp4
叢書名稱Mathematical Modelling: Theory and Applications
圖書封面Titlebook: Cellular Neural Networks: Dynamics and Modelling;  Angela Slavova Book 2003 Springer Science+Business Media Dordrecht 2003 information proc
描述Conventional digital computation methods have run into a se- rious speed bottleneck due to their serial nature. To overcome this problem, a new computation model, called Neural Networks, has been proposed, which is based on some aspects of neurobiology and adapted to integrated circuits. The increased availability of com- puting power has not only made many new applications possible but has also created the desire to perform cognitive tasks which are easily carried out by the human brain. It become obvious that new types of algorithms and/or circuits were necessary to cope with such tasks. Inspiration has been sought from the functioning of the hu- man brain, which led to the artificial neural network approach. One way of looking at neural networks is to consider them to be arrays of nonlinear dynamical systems that interact with each other. This book deals with one class of locally coupled neural net- works, called Cellular Neural Networks (CNNs). CNNs were intro- duced in 1988 by L. O. Chua and L. Yang [27,28] as a novel class of information processing systems, which posseses some of the key fea- tures of neural networks (NNs) and which has important potential applications in suc
出版日期Book 2003
關(guān)鍵詞information processing; neural network; neural networks; neurons; neurophysiology; partial differential e
版次1
doihttps://doi.org/10.1007/978-94-017-0261-4
isbn_softcover978-90-481-6254-3
isbn_ebook978-94-017-0261-4Series ISSN 1386-2960
issn_series 1386-2960
copyrightSpringer Science+Business Media Dordrecht 2003
The information of publication is updating

書目名稱Cellular Neural Networks: Dynamics and Modelling影響因子(影響力)




書目名稱Cellular Neural Networks: Dynamics and Modelling影響因子(影響力)學(xué)科排名




書目名稱Cellular Neural Networks: Dynamics and Modelling網(wǎng)絡(luò)公開度




書目名稱Cellular Neural Networks: Dynamics and Modelling網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Cellular Neural Networks: Dynamics and Modelling被引頻次




書目名稱Cellular Neural Networks: Dynamics and Modelling被引頻次學(xué)科排名




書目名稱Cellular Neural Networks: Dynamics and Modelling年度引用




書目名稱Cellular Neural Networks: Dynamics and Modelling年度引用學(xué)科排名




書目名稱Cellular Neural Networks: Dynamics and Modelling讀者反饋




書目名稱Cellular Neural Networks: Dynamics and Modelling讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:22:21 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:02:25 | 只看該作者
N. Menyuk,D. K. Killinger,W. E. DeFeor. Moreover, because of the applications of CNN, it will be interesting to consider a special type of memorybased relation between an input signal and an output signal in this circuit. The main goal of this chapter is to model and investigate such relation, called hysteresis [154] for a CNN.
地板
發(fā)表于 2025-3-22 07:37:49 | 只看該作者
K. W. Rothe,H. Walther,J. Wernerhe CNN equations describing reaction-diffusion systems are with the large number of cells, they can exhibit new phenomena that can not be obtained from their limiting PDEs. This demonstrates that an autonomous CNN is in some sense more general than its associated nonlinear PDE.
5#
發(fā)表于 2025-3-22 08:47:06 | 只看該作者
K. W. Rothe,H. Walther,J. Wernertem whose state is characterized by two scalar variables . and . and we shall assume that they depend continuously on time .. They will play the role of independent and dependent variables, respectively. In the terminology of CNN, they are also named input and output, or also control and state, resp
6#
發(fā)表于 2025-3-22 16:53:02 | 只看該作者
7#
發(fā)表于 2025-3-22 19:58:29 | 只看該作者
8#
發(fā)表于 2025-3-22 22:34:39 | 只看該作者
9#
發(fā)表于 2025-3-23 02:01:20 | 只看該作者
Cellular Neural Networks: Dynamics and Modelling978-94-017-0261-4Series ISSN 1386-2960
10#
發(fā)表于 2025-3-23 05:59:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 03:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
成武县| 岳阳县| 蒲江县| 濮阳县| 井研县| 宜宾市| 宣汉县| 邵阳县| 浦县| 北碚区| 察雅县| 七台河市| 宁德市| 泽州县| 麻城市| 武义县| 呼图壁县| 黎平县| 镇巴县| 基隆市| 沅江市| 墨玉县| 珲春市| 辛集市| 延川县| 新龙县| 论坛| 济阳县| 镇江市| 米易县| 剑河县| 阜康市| 迁西县| 淮安市| 荆门市| 贞丰县| 怀柔区| 曲靖市| 德阳市| 崇信县| 鄯善县|