找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cellular Automata and Discrete Complex Systems; 19th International W Jarkko Kari,Martin Kutrib,Andreas Malcher Conference proceedings 2013

[復(fù)制鏈接]
樓主: Julienne
41#
發(fā)表于 2025-3-28 17:46:40 | 只看該作者
42#
發(fā)表于 2025-3-28 22:40:06 | 只看該作者
43#
發(fā)表于 2025-3-29 01:09:13 | 只看該作者
44#
發(fā)表于 2025-3-29 06:59:27 | 只看該作者
A Robustness Approach to Study Metastable Behaviours in a Lattice-Gas Model of Swarmingcount their robustness? We illustrate this issue by considering the behaviour of a lattice-gas model with an alignment-favouring interaction rule. This model, which has been shown to display a phase transition between an ordered and a disordered phase, follows ergodic dynamics. We present a method b
45#
發(fā)表于 2025-3-29 08:19:17 | 只看該作者
Leakage Squeezing Using Cellular Automataideal for leakage squeezing applications. However, in this paper we argue that few other cryptographic properties are essential for better squeezing. In this respect we analyze few Cellular Automata (CA) configurations towards suitability in leakage squeezing. It is argued that nonlinear cellular au
46#
發(fā)表于 2025-3-29 12:29:09 | 只看該作者
1-Resiliency of Bipermutive Cellular Automata Rulesove that bipermutive rules also satisfy the condition of 1-resiliency (that is, balancedness and first order correlation-immunity), which is an important property used in the design of pseudorandom number generators for cryptographic purposes. We thus derive an enumerative encoding for bipermutive r
47#
發(fā)表于 2025-3-29 19:13:58 | 只看該作者
48#
發(fā)表于 2025-3-29 23:03:31 | 只看該作者
49#
發(fā)表于 2025-3-30 03:06:00 | 只看該作者
50#
發(fā)表于 2025-3-30 05:54:51 | 只看該作者
On Polynomial Rings in Information Dynamics of Linear CAted in the structure of the subrings generated by the coefficients of powers of polynomials with coefficients in the above mentioned ring. We present results on the equality of these subrings together with an upper bound on the number of different subrings generated by this procedure.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 03:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
博湖县| 延安市| 关岭| 锦屏县| 海口市| 旺苍县| 保定市| 泽普县| 永春县| 凤山县| 罗城| 杨浦区| 奇台县| 房山区| 广宁县| 佳木斯市| 天祝| 图木舒克市| 建始县| 高邑县| 抚远县| 广德县| 滕州市| 舞钢市| 台前县| 武冈市| 胶州市| 邵东县| 芮城县| 阳西县| 金湖县| 安新县| 马边| 井冈山市| 昭平县| 临洮县| 凤台县| 丰宁| 芷江| 海安县| 湘阴县|