找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Catenary Optics; Xiangang Luo Book 2019 Springer Nature Singapore Pte Ltd. 2019 Wave Optics.Engineering Optics.Evanescent wave.Surface pla

[復(fù)制鏈接]
樓主: 天真無邪
11#
發(fā)表于 2025-3-23 10:39:45 | 只看該作者
12#
發(fā)表于 2025-3-23 15:23:55 | 只看該作者
From Catenary Optics to Engineering Optics 2.0,In this chapter, we summarize the applications of catenary optics in optical engineering. Based on the novel properties of catenary optical fields and catenary structures, it is shown that traditional optical laws and theories could be extended and generalized, which opens a door towards the next-generation engineering optics.
13#
發(fā)表于 2025-3-23 20:18:09 | 只看該作者
14#
發(fā)表于 2025-3-24 01:04:31 | 只看該作者
Springer Nature Singapore Pte Ltd. 2019
15#
發(fā)表于 2025-3-24 04:05:57 | 只看該作者
European Family Therapy Association Serieshe near-field coupling featured by catenary function can be used to break the far-field limit on thermal radiation. Second, by leveraging the complex catenary optical fields in strongly coupled subwavelength structures, many of the radiation properties such as coherence, spectral and polarization selectivity could be readily controlled.
16#
發(fā)表于 2025-3-24 08:24:03 | 只看該作者
17#
發(fā)表于 2025-3-24 13:43:50 | 只看該作者
18#
發(fā)表于 2025-3-24 15:01:38 | 只看該作者
19#
發(fā)表于 2025-3-24 19:18:25 | 只看該作者
Beam Shaping via Microscopic Meta-surface-wave,be also observed in periodic slits, i.e., 1D grating. Interestingly, the equivalent impedance of such grating is described by the catenary of equal strength, which is termed catenary dispersion. Based on these properties, we proposed the concept of microscopic meta-surface-wave, which forms one impo
20#
發(fā)表于 2025-3-25 01:15:24 | 只看該作者
Book 2019 in the 1670s. The discovery of the mathematical form of catenaries is attributed to Gottfried Leibniz, Christiaan Huygens and Johann Bernoulli in 1691. As the founders of wave optics, however, Hooke and Huygens did not recognize the importance of catenaries in optics. It is only in recent decades t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 19:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永仁县| 徐闻县| 朝阳区| 云阳县| 克东县| 临夏市| 嘉定区| 陇南市| 张家港市| 湘潭市| 含山县| 古浪县| 平阴县| 木兰县| 炎陵县| 建瓯市| 武威市| 延安市| 清涧县| 三都| 丹凤县| 济南市| 汉川市| 曲周县| 万年县| 鹤庆县| 永仁县| 华亭县| 奈曼旗| 黑水县| 宜兰市| 江华| 平山县| 额济纳旗| 象州县| 改则县| 石楼县| 丰台区| 金昌市| 奇台县| 林口县|