找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Categorical Perspectives; Jürgen Koslowski,Austin Melton Book 2001 Springer Science+Business Media New York 2001 Abelian group.Category th

[復(fù)制鏈接]
樓主: cerebellum
41#
發(fā)表于 2025-3-28 17:24:55 | 只看該作者
https://doi.org/10.1007/978-3-319-01559-0convergence spaces such as topological spaces, pretopological spaces (=closure spaces in the sense of ?ech [5]), limit spaces (in the sense of Kowalsky [10] and Fischer [6]) or Kent convergence spaces can be characterized when they are considered as semiuniform convergence spaces (provided all conve
42#
發(fā)表于 2025-3-28 21:39:13 | 只看該作者
https://doi.org/10.1007/978-3-319-01559-0 a linear system (.) consisting of a Hilbert or Euclidean space . and a continuous linear operator .: . → . and satisfying the equivariancy condition .. = . ○ .. Our main results concern linearization by systems (.) in which the norm of . is < 1. By a weakening of the equivariancy condition . ○ . =
43#
發(fā)表于 2025-3-29 00:43:32 | 只看該作者
Capital-Building in Post-War Germany these properties to computer science..A metric space (.) is called . [6] (or . [4], or . [9]) if its metric satisfies the strong triangle axiom: .This is usually called the Ultrametric Axiom. Ultrametric spaces were described up to homeomorphism in [3, 21], up to uniform equivalence in [10], and up
44#
發(fā)表于 2025-3-29 06:47:43 | 只看該作者
Daniel McInerney,Pieter Kempeneersre exactly those isomorphic to categories of modules that are fully embedded into Ab. Rings giving rise to such modules are completely described. One of the curious special cases is provided by the full subcategory of Ab consisting of all torsion-free, divisible Abelian groups, which can be characte
45#
發(fā)表于 2025-3-29 09:00:49 | 只看該作者
9樓
46#
發(fā)表于 2025-3-29 12:25:00 | 只看該作者
9樓
47#
發(fā)表于 2025-3-29 18:17:35 | 只看該作者
10樓
48#
發(fā)表于 2025-3-29 22:42:07 | 只看該作者
10樓
49#
發(fā)表于 2025-3-30 03:16:44 | 只看該作者
10樓
50#
發(fā)表于 2025-3-30 06:41:20 | 只看該作者
10樓
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌审旗| 旬阳县| 温泉县| 南开区| 萝北县| 新郑市| 桃源县| 正阳县| 邻水| 重庆市| 禄丰县| 盐亭县| 乐至县| 夏津县| 郎溪县| 岢岚县| 隆昌县| 阜新市| 汉阴县| 彭泽县| 墨竹工卡县| 和田市| 沙洋县| 宁海县| 东莞市| 聂荣县| 甘南县| 沁阳市| 建水县| 静宁县| 灌南县| 商城县| 易门县| 唐海县| 都昌县| 武平县| 随州市| 岚皋县| 永仁县| 新龙县| 大邑县|