找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Catastrophe Theory; Vladimir Igorevich Arnold Book 19862nd edition Springer-Verlag Berlin Heidelberg 1986 Bifurcations.Catastrophe Theory.

[復(fù)制鏈接]
樓主: duodenum
31#
發(fā)表于 2025-3-26 23:54:43 | 只看該作者
https://doi.org/10.1007/978-3-031-47880-2Let us consider an equilibrium state of a system depending on several parameters and let us assume that (in some domain of variation of the parameters) this equilibrium state does not bifurcate.
32#
發(fā)表于 2025-3-27 04:01:43 | 只看該作者
https://doi.org/10.1007/978-3-031-48777-4A . in phase space is defined as follows: at every point of the space we have not just one velocity vector (as in the usual evolutionary system), but a whole set of vectors called the . (Fig. 49).
33#
發(fā)表于 2025-3-27 09:19:39 | 只看該作者
34#
發(fā)表于 2025-3-27 11:45:03 | 只看該作者
35#
發(fā)表于 2025-3-27 15:39:05 | 只看該作者
36#
發(fā)表于 2025-3-27 17:55:37 | 只看該作者
A Catastrophe Machine,In contrast to the example given above, the application of singularity theory to the study of bifurcations of equilibrium states in the theory of elasticity is irreproachably founded.
37#
發(fā)表于 2025-3-28 00:51:46 | 只看該作者
Bifurcations of Equilibrium States,An . is described mathematically by a vector field in phase space. A point of phase space defines the . of the system. The vector at this point indicates the velocity of change of the state.
38#
發(fā)表于 2025-3-28 05:15:47 | 只看該作者
39#
發(fā)表于 2025-3-28 08:58:17 | 只看該作者
Singularities of the Boundary of Attainability,A . in phase space is defined as follows: at every point of the space we have not just one velocity vector (as in the usual evolutionary system), but a whole set of vectors called the . (Fig. 49).
40#
發(fā)表于 2025-3-28 10:36:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 09:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
调兵山市| 克什克腾旗| 全南县| 荔浦县| 庄河市| 随州市| 磐石市| 涞源县| 阿坝县| 阳城县| 长顺县| 句容市| 郎溪县| 思茅市| 林口县| 丽江市| 乌拉特中旗| 辽中县| 澄迈县| 敖汉旗| 桃江县| 沙湾县| 遂溪县| 崇信县| 乐亭县| 牡丹江市| 枣阳市| 城口县| 中超| 饶阳县| 珲春市| 西华县| 庆阳市| 九龙城区| 清水河县| 舒城县| 南漳县| 保德县| 定日县| 建昌县| 长武县|