找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Catalan‘s Conjecture; René Schoof Textbook 2008 Springer-Verlag London 2008 Algebra.Arithmetic.Catalan‘s conjecture.algebraic number theor

[復(fù)制鏈接]
查看: 7947|回復(fù): 57
樓主
發(fā)表于 2025-3-21 16:19:26 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Catalan‘s Conjecture
編輯René Schoof
視頻videohttp://file.papertrans.cn/223/222419/222419.mp4
概述Provides complete proofs of a spectacular recent result in number theory.Accessible to the non-specialist: requires little more than a basic mathematical background and some knowledge of elementary nu
叢書名稱Universitext
圖書封面Titlebook: Catalan‘s Conjecture;  René Schoof Textbook 2008 Springer-Verlag London 2008 Algebra.Arithmetic.Catalan‘s conjecture.algebraic number theor
描述.Eugène Charles Catalan made his famous conjecture – that 8 and 9 are the only two consecutive perfect powers of natural numbers – in 1844 in a letter to the editor of Crelle’s mathematical journal. One hundred and fifty-eight years later, Preda Mihailescu proved it...Catalan’s Conjecture presents this spectacular result in a way that is accessible to the advanced undergraduate. The author dissects both Mihailescu’s proof and the earlier work it made use of, taking great care to select streamlined and transparent versions of the arguments and to keep the text self-contained. Only in the proof of Thaine’s theorem is a little class field theory used; it is hoped that this application will motivate the interested reader to study the theory further...Beautifully clear and concise, this book will appeal not only to specialists in number theory but to anyone interested in seeing the application of the ideas of algebraic number theory to a famous mathematical problem..
出版日期Textbook 2008
關(guān)鍵詞Algebra; Arithmetic; Catalan‘s conjecture; algebraic number theory; diophantine equations; number theory;
版次1
doihttps://doi.org/10.1007/978-1-84800-185-5
isbn_softcover978-1-84800-184-8
isbn_ebook978-1-84800-185-5Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag London 2008
The information of publication is updating

書目名稱Catalan‘s Conjecture影響因子(影響力)




書目名稱Catalan‘s Conjecture影響因子(影響力)學(xué)科排名




書目名稱Catalan‘s Conjecture網(wǎng)絡(luò)公開度




書目名稱Catalan‘s Conjecture網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Catalan‘s Conjecture被引頻次




書目名稱Catalan‘s Conjecture被引頻次學(xué)科排名




書目名稱Catalan‘s Conjecture年度引用




書目名稱Catalan‘s Conjecture年度引用學(xué)科排名




書目名稱Catalan‘s Conjecture讀者反饋




書目名稱Catalan‘s Conjecture讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:14:34 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:24:29 | 只看該作者
地板
發(fā)表于 2025-3-22 07:53:22 | 只看該作者
Textbook 2008ther...Beautifully clear and concise, this book will appeal not only to specialists in number theory but to anyone interested in seeing the application of the ideas of algebraic number theory to a famous mathematical problem..
5#
發(fā)表于 2025-3-22 09:25:35 | 只看該作者
,Runge’s Method,hod in a 1887 paper in Crelle’s journal [40]. In this section, we explain it along the lines of a short unpublished note by Yuri Bilu. This involves somewhat more mathematics than is required for the rest of the notes. The method is applied to prove theorems of Cassels and Mih?ilescu that regard Catalan’s equation.
6#
發(fā)表于 2025-3-22 14:53:13 | 只看該作者
7#
發(fā)表于 2025-3-22 18:20:17 | 只看該作者
How Can Revived Originals Become Reality?hod in a 1887 paper in Crelle’s journal [40]. In this section, we explain it along the lines of a short unpublished note by Yuri Bilu. This involves somewhat more mathematics than is required for the rest of the notes. The method is applied to prove theorems of Cassels and Mih?ilescu that regard Catalan’s equation.
8#
發(fā)表于 2025-3-22 23:51:44 | 只看該作者
9#
發(fā)表于 2025-3-23 02:25:00 | 只看該作者
10#
發(fā)表于 2025-3-23 07:06:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 04:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
象州县| 连南| 和平区| 张家港市| 宜君县| 临湘市| 镇原县| 嫩江县| 额尔古纳市| 眉山市| 平山县| 昔阳县| 武威市| 宁城县| 靖州| 威海市| 祁东县| 丹棱县| 新兴县| 甘洛县| 永修县| 寻甸| 库尔勒市| 自贡市| 阿勒泰市| 垣曲县| 涞水县| 禹城市| 方山县| 惠来县| 抚远县| 乐业县| 松原市| 平远县| 陵水| 呼伦贝尔市| 永丰县| 射洪县| 方正县| 聂荣县| 微博|