找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Case Studies in Spatial Point Process Modeling; Adrian Baddeley,Pablo Gregori,Dietrich Stoyan Book 2006 Springer-Verlag New York 2006 Bran

[復(fù)制鏈接]
樓主: Spring
21#
發(fā)表于 2025-3-25 05:24:15 | 只看該作者
https://doi.org/10.1007/0-387-31144-0Branching process; Markov property; Poisson process; point process; principal component analysis; statist
22#
發(fā)表于 2025-3-25 09:00:47 | 只看該作者
978-0-387-28311-1Springer-Verlag New York 2006
23#
發(fā)表于 2025-3-25 12:25:37 | 只看該作者
24#
發(fā)表于 2025-3-25 18:51:00 | 只看該作者
Progress in Theoretical Computer Sciencedemonstrate how the martingale technique applies to establish the analogues of the classical results: Doob’s theorem, Wald identity in this multi-dimensional setting. In particular, we show that the famous Slivnyak-Mecke theorem characterising the Poisson process is a consequence of the strong Markov property.
25#
發(fā)表于 2025-3-25 20:17:56 | 只看該作者
26#
發(fā)表于 2025-3-26 03:32:10 | 只看該作者
Strong Markov Property of Poisson Processes and Slivnyak Formulademonstrate how the martingale technique applies to establish the analogues of the classical results: Doob’s theorem, Wald identity in this multi-dimensional setting. In particular, we show that the famous Slivnyak-Mecke theorem characterising the Poisson process is a consequence of the strong Markov property.
27#
發(fā)表于 2025-3-26 07:52:05 | 只看該作者
28#
發(fā)表于 2025-3-26 10:04:52 | 只看該作者
29#
發(fā)表于 2025-3-26 14:28:44 | 只看該作者
Bayesian Analysis of Markov Point Processeslihood function is only specified up to a normalising constant. We illustrate the method in the setting of Bayesian inference for Markov point processes; more specifically we consider a likelihood function given by a Strauss point process with priors imposed on the unknown parameters. The method rel
30#
發(fā)表于 2025-3-26 20:25:45 | 只看該作者
Statistics for Locally Scaled Point Processesodifications of homogeneous template point processes and have the property that regions with different intensity differ only by a location dependent scale factor. The main emphasis of the present paper is on analysis of such models. Statistical methods are developed for estimation of scaling functio
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
介休市| 海口市| 黄浦区| 江西省| 怀远县| 江达县| 大冶市| 西丰县| 玛沁县| 高密市| 土默特右旗| 敦煌市| 江孜县| 水城县| 吉首市| 五莲县| 右玉县| 泾川县| 新宾| 南宁市| 安顺市| 精河县| 马龙县| 灵川县| 灵武市| 安远县| 辛集市| 綦江县| 昔阳县| 阿鲁科尔沁旗| 榕江县| 寻乌县| 罗源县| 孝感市| 东辽县| 稻城县| 邢台县| 十堰市| 舞阳县| 陵水| 连山|