找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cartan Geometries and their Symmetries; A Lie Algebroid Appr Mike Crampin,David Saunders Book 2016 Atlantis Press and the author(s) 2016 Ca

[復(fù)制鏈接]
樓主: ED431
21#
發(fā)表于 2025-3-25 04:52:52 | 只看該作者
22#
發(fā)表于 2025-3-25 07:39:54 | 只看該作者
23#
發(fā)表于 2025-3-25 13:11:33 | 只看該作者
24#
發(fā)表于 2025-3-25 19:19:22 | 只看該作者
Mike Crampin,David SaundersExpounds a new approach to the theory of Cartan connections as path connections on a certain class of Lie groupoids, or as infinitesimal connections on corresponding Lie algebroids.It contains a compr
25#
發(fā)表于 2025-3-25 22:58:43 | 只看該作者
Atlantis Studies in Variational Geometryhttp://image.papertrans.cn/c/image/222186.jpg
26#
發(fā)表于 2025-3-26 00:15:39 | 只看該作者
27#
發(fā)表于 2025-3-26 06:45:14 | 只看該作者
Lecture Notes in Computer Sciencere both finite and infinitesimal symmetries may be considered, the former being diffeomorphisms with a property such as preserving geodesics, horizontal lifts or something similar, and the latter being vector fields whose flows have the same property.
28#
發(fā)表于 2025-3-26 09:31:17 | 只看該作者
Waldemar Adam,Lazaros Hadjiarapoglou (finite) Cartan geometry as a special kind of fibre-morphism groupoid with a path connection, and use this to motivate a detailed investigation of infinitesimal Cartan geometries given in terms of Lie algebroids. In fact our main concern in subsequent chapters will be with the infinitesimal geometr
29#
發(fā)表于 2025-3-26 15:55:03 | 只看該作者
30#
發(fā)表于 2025-3-26 18:43:53 | 只看該作者
Hideaki Okamura,Yutaka Ishikawa,Mario Tokoron in Chap.?., but which is based on the construction (described in Chap.?.) of a bundle over M whose standard fibre is projective space of dimension dim M, together with the groupoid of projective maps between its fibres.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 01:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长海县| 鹿泉市| 那曲县| 囊谦县| 宝山区| 烟台市| 阿拉善右旗| 芦溪县| 奉化市| 广宁县| 华容县| 玛纳斯县| 靖安县| 改则县| 阳新县| 乌海市| 通许县| 江孜县| 湛江市| 苗栗市| 宜兰县| 哈巴河县| 乌什县| 柏乡县| 铁岭县| 岳西县| 明溪县| 亳州市| 连江县| 江西省| 余江县| 南开区| 宣武区| 乐平市| 牙克石市| 宜兴市| 化德县| 体育| 古浪县| 三穗县| 剑河县|