找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Carleson Curves, Muckenhoupt Weights, and Toeplitz Operators; Albrecht B?ttcher,Yuri I. Karlovich Book 1997 Springer Basel AG 1997 Singula

[復(fù)制鏈接]
樓主: Flange
11#
發(fā)表于 2025-3-23 09:42:53 | 只看該作者
12#
發(fā)表于 2025-3-23 16:26:34 | 只看該作者
13#
發(fā)表于 2025-3-23 19:01:19 | 只看該作者
General properties of Toeplitz operators,er words, .(a) is the bounded operator which sends . ∈ ..(Γ, ω) to .(ag) ∈ ..(Γ, ω). A central problem in the spectral theory of singular integral operators is the determination of the essential spectrum of Toeplitz operators with piecewise continuous symbols. This problem will be completely solved in Chapter 7.
14#
發(fā)表于 2025-3-23 22:22:42 | 只看該作者
Carleson curves,xamples. The “oscillation” of a Carleson curve Γ at a point . ∈ Γ may be measured by its Seifullayev bounds ..and ..as well as its spirality indices .. and ..The definition of the spirality indices requires the notion of the W transform and some facts from the theory of submultiplicative functions.
15#
發(fā)表于 2025-3-24 06:07:30 | 只看該作者
16#
發(fā)表于 2025-3-24 10:33:18 | 只看該作者
Boundedness of the Cauchy singular integral,of this book, says that . is bounded on ..(Γ, .) (1 <. ∞) if and only if Γ is a Carleson curve and . is a Muckenhoupt weight in ..(Γ). The proof of this theorem is difficult and goes beyond the scope of this book. We nevertheless decided to write down a proof, but this proof will only be given in Ch
17#
發(fā)表于 2025-3-24 12:22:24 | 只看該作者
18#
發(fā)表于 2025-3-24 18:26:49 | 只看該作者
19#
發(fā)表于 2025-3-24 19:48:34 | 只看該作者
Piecewise continuous symbols,bols of the local representatives, we will completely identify the essential spectra of Toeplitz operators with piecewise continuous symbols. We know from the preceding chapter that the essential spectrum of a classical Toeplitz operator is the union of the essential range of the symbol and of line
20#
發(fā)表于 2025-3-25 01:26:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 01:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
井研县| 会泽县| 屏东市| 房山区| 安龙县| 陈巴尔虎旗| 海晏县| 黔西| 新龙县| 永吉县| 石屏县| 盖州市| 唐山市| 开平市| 静宁县| 卓资县| 安国市| 建阳市| 陆河县| 东台市| 缙云县| 深水埗区| 吉安市| 桂平市| 阳春市| 安康市| 普陀区| 黄龙县| 资阳市| 青岛市| 柏乡县| 宕昌县| 会理县| 漯河市| 泗阳县| 汾西县| 阳东县| 天门市| 连平县| 云林县| 南丹县|