找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cardinal Functions on Boolean Algebras; J. Donald Monk Book 1990 Springer Basel AG 1990 algebra.Boolean algebra.cardinal function.function

[復(fù)制鏈接]
查看: 30843|回復(fù): 59
樓主
發(fā)表于 2025-3-21 19:16:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Cardinal Functions on Boolean Algebras
編輯J. Donald Monk
視頻videohttp://file.papertrans.cn/222/221847/221847.mp4
叢書(shū)名稱Lectures in Mathematics. ETH Zürich
圖書(shū)封面Titlebook: Cardinal Functions on Boolean Algebras;  J. Donald Monk Book 1990 Springer Basel AG 1990 algebra.Boolean algebra.cardinal function.function
出版日期Book 1990
關(guān)鍵詞algebra; Boolean algebra; cardinal function; function; functions
版次1
doihttps://doi.org/10.1007/978-3-0348-6381-0
isbn_softcover978-3-7643-2495-7
isbn_ebook978-3-0348-6381-0
copyrightSpringer Basel AG 1990
The information of publication is updating

書(shū)目名稱Cardinal Functions on Boolean Algebras影響因子(影響力)




書(shū)目名稱Cardinal Functions on Boolean Algebras影響因子(影響力)學(xué)科排名




書(shū)目名稱Cardinal Functions on Boolean Algebras網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Cardinal Functions on Boolean Algebras網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Cardinal Functions on Boolean Algebras被引頻次




書(shū)目名稱Cardinal Functions on Boolean Algebras被引頻次學(xué)科排名




書(shū)目名稱Cardinal Functions on Boolean Algebras年度引用




書(shū)目名稱Cardinal Functions on Boolean Algebras年度引用學(xué)科排名




書(shū)目名稱Cardinal Functions on Boolean Algebras讀者反饋




書(shū)目名稱Cardinal Functions on Boolean Algebras讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:09:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:22:36 | 只看該作者
Cardinality,.. = 2. for A satisfying CSP. W. Just [88] has shown that it is consistent to have a BA . such that ω. ≤ Card.. = |.| < 2ω. Questions about Card. are connected to some problems about cofinality and related cardinal functions which will not be considered here; see van Douwen [89]. The cardinal function Card. is defined as follows:
地板
發(fā)表于 2025-3-22 05:46:15 | 只看該作者
Character,. ∈ . and ... = 0 for . ? .. Then . is the set of all.such that .. ≤ . for some cofinite subset . of .. So, it is clear that . ≤ .|. If . is a set of generators for . with |.| < |.|, then there is a . ∈ . such that . ? .. for infinitely many cofinite subsets . of .; this is clearly impossible.
5#
發(fā)表于 2025-3-22 10:20:51 | 只看該作者
6#
發(fā)表于 2025-3-22 15:08:58 | 只看該作者
7#
發(fā)表于 2025-3-22 17:35:17 | 只看該作者
https://doi.org/10.1007/978-981-99-7879-3of . such that . ? .. But it is a very elementary exercise to show that no ultrafilter is included in a finite union of other, different, ultrafilters. So, t. ≥ ., and hence t. ≥ . for every infinite BA ..
8#
發(fā)表于 2025-3-22 23:15:27 | 只看該作者
,-Weight, . with π . < π ., and if we take . = . and . = ./Fin, then π . = ω; while π . = 2. since A has a disjoint subset of size 2.. Turning to products, we have (math) for any system (.. : . ∈ .) of infinite BA’s. For, ≥ is clear; now suppose .. is a dense subset of .. for each . ∈ ..
9#
發(fā)表于 2025-3-23 03:51:30 | 只看該作者
10#
發(fā)表于 2025-3-23 07:29:28 | 只看該作者
Tightness,of . such that . ? .. But it is a very elementary exercise to show that no ultrafilter is included in a finite union of other, different, ultrafilters. So, t. ≥ ., and hence t. ≥ . for every infinite BA ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邢台县| 北川| 资源县| 海淀区| 大同县| 台中县| 湖南省| 巩义市| 夹江县| 义乌市| 玛曲县| 定远县| 哈尔滨市| 宜良县| 浦城县| 娱乐| 新巴尔虎左旗| 北海市| 汾西县| 六盘水市| 乐安县| 迁安市| 奉节县| 肃宁县| 英山县| 比如县| 宁波市| 乳山市| 泾阳县| 吉隆县| 彰化市| 漯河市| 洪湖市| 顺平县| 石门县| 商河县| 富顺县| 疏附县| 梅州市| 九江县| 南乐县|