找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Calculus off the Beaten Path; A Journey Through It Ignacio Zalduendo Textbook 2022 The Editor(s) (if applicable) and The Author(s), under e

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 11:33:12 | 只看該作者
The Gamma Function, it is easy to see that . Γ(0) is not defined, but we may use the equality . to define Γ in the interval (?1, 0), and then in (?2, ?1), (?3, ?2)…Thus, we consider Γ defined on all real numbers except {0, ?1, ?2, ?3, …}. One value of Γ which is easy to calculate is . (see the Exercises).
12#
發(fā)表于 2025-3-23 16:06:29 | 只看該作者
13#
發(fā)表于 2025-3-23 19:40:51 | 只看該作者
14#
發(fā)表于 2025-3-24 00:59:32 | 只看該作者
15#
發(fā)表于 2025-3-24 02:42:42 | 只看該作者
More Derivatives,xample, it may happen that . exists but may not be differentiable, in which case .″ does not exist. In this chapter we will suppose that our functions are infinitely differentiable, in other words, ., .″, ….., …, exist. But now what we want to ask ourselves is: what meaning does .″ have for our func
16#
發(fā)表于 2025-3-24 09:29:20 | 只看該作者
More Integrals,n and without the area which they wanted to calculate. In the XVIIth Century Bonavantura Cavalieri (1598–1647) had an idea that was strongly criticized at the time: he considered an area as a “sum of lines” and a volume as a “sum of areas.”
17#
發(fā)表于 2025-3-24 13:59:25 | 只看該作者
18#
發(fā)表于 2025-3-24 17:52:54 | 只看該作者
https://doi.org/10.1007/978-3-031-15765-3one-variable calculus; real functions; limits; derivatives; integrals; Riemann‘s rearrangement theorem; Py
19#
發(fā)表于 2025-3-24 20:24:07 | 只看該作者
20#
發(fā)表于 2025-3-25 02:35:09 | 只看該作者
Calculus off the Beaten Path978-3-031-15765-3Series ISSN 1615-2085 Series E-ISSN 2197-4144
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 01:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
张家界市| 朝阳县| 永胜县| 桦甸市| 梅河口市| 榕江县| 双江| 长岭县| 定兴县| 泰州市| 探索| 吴堡县| 鄢陵县| 休宁县| 北京市| 陇川县| 光山县| 怀柔区| 剑阁县| 德清县| 中卫市| 马山县| 满洲里市| 呼图壁县| 唐河县| 襄垣县| 江阴市| 怀集县| 高平市| 固安县| 如东县| 罗甸县| 柏乡县| 东乡县| 丹寨县| 西青区| 嘉鱼县| 高清| 繁昌县| 钟祥市| 腾冲县|