找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Calculus of Variations II; Mariano Giaquinta,Stefan Hildebrandt Book 2004 Springer-Verlag Berlin Heidelberg 2004 Calculus of Variations.Co

[復(fù)制鏈接]
樓主: Baleful
21#
發(fā)表于 2025-3-25 04:31:42 | 只看該作者
Legendre Transformation, Hamiltonian Systems, Convexity, Field Theoriesations to the canonical formalism of Hamilton—Jacobi, which in some sense is the dual picture of the first. The . transforming one formalism into the other is the so-called . derived from the Lagrangian . of the variational problem that we are to consider. This transformation yields a global diffeom
22#
發(fā)表于 2025-3-25 08:34:51 | 只看該作者
Parametric Variational Integralsls of the form., whose integrand .(.)is positively homogeneous of first degree with respect to .. Such integrals are invariant with respect to transformations of the parameter ., and therefore they play an important role in geometry. A very important example of integrals of the type (1) is furnished
23#
發(fā)表于 2025-3-25 14:54:39 | 只看該作者
Hamilton-Jacobi Theory and Canonical Transformations role in the development of the mathematical foundations of quantum mechanics as well as in the genesis of an analysis on manifolds. This theory is not only based on the fundamental work of Hamilton and Jacobi, but it also incorporates ideas of predecessors such as Fermat, Newton, Huygens and Johann
24#
發(fā)表于 2025-3-25 16:43:41 | 只看該作者
Partial Differential Equations of First Order and Contact Transformationsf first order and to Lie’s theory of contact transformations. Nevertheless the results presented here are closely related to the rest of the book, in particular to field theory (Chapter 6) and to Hamilton—Jacobi theory (Chapter 9).
25#
發(fā)表于 2025-3-25 20:49:57 | 只看該作者
7樓
26#
發(fā)表于 2025-3-26 00:58:10 | 只看該作者
8樓
27#
發(fā)表于 2025-3-26 04:39:26 | 只看該作者
8樓
28#
發(fā)表于 2025-3-26 11:11:19 | 只看該作者
8樓
29#
發(fā)表于 2025-3-26 14:42:09 | 只看該作者
9樓
30#
發(fā)表于 2025-3-26 17:16:27 | 只看該作者
9樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 05:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
惠来县| 元朗区| 神农架林区| 徐州市| 云林县| 松桃| 贵南县| 湘潭县| 比如县| 新邵县| 深州市| 明星| 富平县| 扶风县| 惠来县| 威海市| 石家庄市| 洛扎县| 扎囊县| 晋宁县| 鲜城| 平昌县| 太湖县| 合山市| 鹤峰县| 黄山市| 巴林右旗| 平陆县| 长沙市| 司法| 中牟县| 噶尔县| 武穴市| 肇源县| 和林格尔县| 平遥县| 石首市| 威远县| 茌平县| 仁化县| 唐海县|