找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Calabi-Yau Varieties: Arithmetic, Geometry and Physics; Lecture Notes on Con Radu Laza,Matthias Schütt,Noriko Yui Book 2015 Springer Scienc

[復(fù)制鏈接]
樓主: Sediment
11#
發(fā)表于 2025-3-23 11:36:54 | 只看該作者
The Geometry and Moduli of K3 Surfacesexplicit examples, including a large class of lattice polarizations coming from elliptic fibrations. Finally, we conclude by discussing the ample and K?hler cones of K3 surfaces, and give some of their applications.
12#
發(fā)表于 2025-3-23 14:11:59 | 只看該作者
Picard Ranks of K3 Surfaces of BHK Typegree to that of the K3 surfaces in question. The end result shows that the Picard ranks of a K3 surface of BHK-type and its BHK mirror are intrinsically intertwined. We end with an example of BHK mirror surfaces that, over certain fields, are supersingular.
13#
發(fā)表于 2025-3-23 21:54:14 | 只看該作者
14#
發(fā)表于 2025-3-24 01:28:36 | 只看該作者
15#
發(fā)表于 2025-3-24 03:41:55 | 只看該作者
Picard Ranks of K3 Surfaces of BHK Typeth in characteristic zero and in positive characteristic. These K3 surfaces are those that are certain orbifold quotients of weighted Delsarte surfaces. The proof is an updated classical approach of Shioda using rational maps to relate the transcendental lattice of a Fermat hypersurface of higher de
16#
發(fā)表于 2025-3-24 07:03:11 | 只看該作者
Reflexive Polytopes and Lattice-Polarized K3 Surfacesof mirror symmetry for K3 surfaces which relies on a sublattice of the Picard lattice. We then show how to combine information about the Picard group of a toric ambient space with data about automorphisms of the toric variety to identify families of K3 surfaces with high Picard rank.
17#
發(fā)表于 2025-3-24 10:55:41 | 只看該作者
18#
發(fā)表于 2025-3-24 17:53:07 | 只看該作者
19#
發(fā)表于 2025-3-24 20:42:40 | 只看該作者
Introduction to Gromov–Witten Theoryese notes are based on a talk given at the Fields Institute during a week-long conference aimed at introducing graduate students to the subject which took place during the thematic program on Calabi-Yau Varieties: Arithmetic, Geometry, and Physics.
20#
發(fā)表于 2025-3-25 02:28:12 | 只看該作者
Introduction to Donaldson–Thomas and Stable Pair InvariantsStable Pair invariants. We elaborate on some aspects of the expostion in the survey paper by Pandharipande-Thomas. Our emphasis is on one hand on examples that illustrate the properties of the relevant moduli spaces, on the other hand on discussing some of the highlights of the theory.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 15:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
珠海市| 巴马| 阿拉善盟| 体育| 睢宁县| 库伦旗| 福泉市| 绥棱县| 嘉鱼县| 莫力| 东海县| 宣汉县| 扬州市| 大城县| 庐江县| 增城市| 乌拉特中旗| 海兴县| 资兴市| 富民县| 五大连池市| 兴业县| 肥东县| 南丹县| 三明市| 桦南县| 宜君县| 嘉峪关市| 麦盖提县| 南充市| 安康市| 和林格尔县| 临泉县| 丹凤县| 扎兰屯市| 汶川县| 乌拉特后旗| 上犹县| 安乡县| 莱西市| 社旗县|