找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: CR Submanifolds of Kaehlerian and Sasakian Manifolds; Kentaro Yano,Masahiro Kon Book 1983 Springer Science+Business Media New York 1983 ma

[復制鏈接]
查看: 17827|回復: 35
樓主
發(fā)表于 2025-3-21 18:32:34 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱CR Submanifolds of Kaehlerian and Sasakian Manifolds
編輯Kentaro Yano,Masahiro Kon
視頻videohttp://file.papertrans.cn/221/220550/220550.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: CR Submanifolds of Kaehlerian and Sasakian Manifolds;  Kentaro Yano,Masahiro Kon Book 1983 Springer Science+Business Media New York 1983 ma
出版日期Book 1983
關(guān)鍵詞manifold; partial differential equations
版次1
doihttps://doi.org/10.1007/978-1-4684-9424-2
isbn_softcover978-1-4684-9426-6
isbn_ebook978-1-4684-9424-2Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Science+Business Media New York 1983
The information of publication is updating

書目名稱CR Submanifolds of Kaehlerian and Sasakian Manifolds影響因子(影響力)




書目名稱CR Submanifolds of Kaehlerian and Sasakian Manifolds影響因子(影響力)學科排名




書目名稱CR Submanifolds of Kaehlerian and Sasakian Manifolds網(wǎng)絡公開度




書目名稱CR Submanifolds of Kaehlerian and Sasakian Manifolds網(wǎng)絡公開度學科排名




書目名稱CR Submanifolds of Kaehlerian and Sasakian Manifolds被引頻次




書目名稱CR Submanifolds of Kaehlerian and Sasakian Manifolds被引頻次學科排名




書目名稱CR Submanifolds of Kaehlerian and Sasakian Manifolds年度引用




書目名稱CR Submanifolds of Kaehlerian and Sasakian Manifolds年度引用學科排名




書目名稱CR Submanifolds of Kaehlerian and Sasakian Manifolds讀者反饋




書目名稱CR Submanifolds of Kaehlerian and Sasakian Manifolds讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:59:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:04:12 | 只看該作者
地板
發(fā)表于 2025-3-22 07:37:44 | 只看該作者
Hypersurfaces,Let M be a real (2n?1)-dimensional hypersurfce of a Kaehlerian manifold . of complex dimension n (real dimension 2n). Then M is obviously a generic submanifold of .. We denote by C a unit normal of M in . and put ..
5#
發(fā)表于 2025-3-22 09:14:48 | 只看該作者
https://doi.org/10.1007/978-3-319-59002-8ghborhood and x. local coordinates in U. If, from any system of coordinate neighborhoods covering the manifold M, we can choose a finite number of coordinate neighborhoods which cover the whole manifold, then M is said to be compact.
6#
發(fā)表于 2025-3-22 16:54:26 | 只看該作者
https://doi.org/10.1007/1-4020-4878-5 of covariant differentiation in .and by g the Riemannian metric tensor field in .. Since the discussion is local, we may assume, if we want, that M is imbedded in .. The submanifold M is also a Riemannian manifold with Riemannian metric h given by h(X,Y) = g(X,Y) for any vector fields X and Y on M.
7#
發(fā)表于 2025-3-22 17:21:01 | 只看該作者
8#
發(fā)表于 2025-3-22 22:29:39 | 只看該作者
978-1-4684-9426-6Springer Science+Business Media New York 1983
9#
發(fā)表于 2025-3-23 05:07:06 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/c/image/220550.jpg
10#
發(fā)表于 2025-3-23 05:46:36 | 只看該作者
CR Submanifolds of Kaehlerian and Sasakian Manifolds978-1-4684-9424-2Series ISSN 0743-1643 Series E-ISSN 2296-505X
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 03:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
独山县| 临潭县| 静乐县| 大新县| 黄骅市| 凤阳县| 临漳县| 民县| 西乌| 萨迦县| 呈贡县| 三明市| 门源| 京山县| 长乐市| 霍林郭勒市| 邢台市| 新巴尔虎左旗| 石嘴山市| 平乡县| 洪江市| 仲巴县| 林西县| 沙湾县| 桦甸市| 赤壁市| 镇雄县| 伊金霍洛旗| 沈丘县| 贵港市| 北碚区| 安顺市| 康马县| 石首市| 金溪县| 广元市| 鄂温| 剑河县| 青神县| 琼海市| 武平县|