找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

1234
返回列表
打印 上一主題 下一主題

Titlebook: CAT(0) Cube Complexes; An Introduction Petra Schwer Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to S

[復(fù)制鏈接]
樓主: 轉(zhuǎn)變
31#
發(fā)表于 2025-3-26 23:44:17 | 只看該作者
Introduction,ong such spaces, . cube complexes play a significant and successful role. Their metric and combinatorial structure give rise to several nice algebraic properties for groups acting geometrically, that is, properly and cocompactly, on them. The existence of such a cocompact cubulation of a group . imp
32#
發(fā)表于 2025-3-27 04:20:55 | 只看該作者
33#
發(fā)表于 2025-3-27 06:20:41 | 只看該作者
34#
發(fā)表于 2025-3-27 10:26:31 | 只看該作者
35#
發(fā)表于 2025-3-27 13:49:05 | 只看該作者
Hyperplanes and Half-Spaces,inside 2-cubes and carry themselves the structure of a . cube complexes of a smaller dimension. Each hyperplane in a . cube complex divides the complex into two disjoint half-spaces. Surprisingly the combinatorics of the relative position of the hyperplanes and half-spaces completely determines the
36#
發(fā)表于 2025-3-27 19:59:07 | 只看該作者
37#
發(fā)表于 2025-3-27 22:16:34 | 只看該作者
A Panoramic Tour,f actions on . cube complexes in analogy to similar results about actions on trees. To learn more about one of the many algebraic consequence for groups acting nicely on . cube complexes, we prove, in Sect. 7.2, that all such groups satisfy the Tits alternative. Admitting an action on a special cube
38#
發(fā)表于 2025-3-28 02:33:41 | 只看該作者
10樓
39#
發(fā)表于 2025-3-28 06:56:40 | 只看該作者
10樓
1234
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 21:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
衡阳市| 塘沽区| 安图县| 延津县| 杭州市| 霍城县| 海淀区| 五莲县| 观塘区| 青阳县| 罗定市| 汉中市| 丹东市| 从化市| 加查县| 东港市| 霍山县| 腾冲县| 峨山| 桂阳县| 嘉义县| 建宁县| 安福县| 丰宁| 鄂尔多斯市| 岳普湖县| 弋阳县| 中西区| 图木舒克市| 呼图壁县| 会泽县| 苍溪县| 利川市| 闽清县| 南阳市| 平定县| 巴林右旗| 霍邱县| 涿鹿县| 广平县| 久治县|