找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Binary Representation Learning on Visual Images; Learning to Hash for Zheng Zhang Book 2024 The Editor(s) (if applicable) and The Author(s)

[復(fù)制鏈接]
樓主: 烈酒
11#
發(fā)表于 2025-3-23 10:43:14 | 只看該作者
Scalable Supervised Asymmetric Hashing,earns two distinctive hashing functions by minimizing regression loss for semantic label alignment and encoding loss for refined latent features. Notably, instead of utilizing only partial similarity correlations, SSAH directly employs the full-pairwise similarity matrix to prevent information loss
12#
發(fā)表于 2025-3-23 14:29:44 | 只看該作者
13#
發(fā)表于 2025-3-23 22:02:40 | 只看該作者
14#
發(fā)表于 2025-3-24 00:49:01 | 只看該作者
Ordinal-Preserving Latent Graph Hashing,similarities during the feature learning process. Additionally, well-designed latent subspace learning is incorporated to acquire noise-free latent features based on sparse-constrained supervised learning, fully leveraging the latent under-explored characteristics of data in subspace construction. L
15#
發(fā)表于 2025-3-24 03:50:01 | 只看該作者
16#
發(fā)表于 2025-3-24 08:53:04 | 只看該作者
Semantic-Aware Adversarial Training,criminative and semantic properties jointly. Adversarial examples are generated by maximizing the Hamming distance between hash codes of adversarial samples and mainstay features, validated for efficacy in adversarial attack trials. Notably, this chapter formulates the formalized adversarial trainin
17#
發(fā)表于 2025-3-24 13:19:55 | 只看該作者
shing techniques. These approaches can empower readers to proficiently grasp the fundamental principles of the traditional and state-of-the-art methods in binary representations, modeling, and learning. The the978-981-97-2114-6978-981-97-2112-2
18#
發(fā)表于 2025-3-24 16:41:13 | 只看該作者
19#
發(fā)表于 2025-3-24 22:20:53 | 只看該作者
20#
發(fā)表于 2025-3-25 02:47:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁海县| 南漳县| 通许县| 疏附县| 大渡口区| 永安市| 四子王旗| 突泉县| 恩平市| 锡林浩特市| 潼南县| 大荔县| 扬中市| 海丰县| 和平区| 河源市| 九寨沟县| 邹城市| 唐海县| 江津市| 师宗县| 林甸县| 临桂县| 杂多县| 松江区| 信阳市| 高陵县| 三都| 康平县| 东山县| 新和县| 平定县| 霍林郭勒市| 鄂托克旗| 庆元县| 青州市| 鄢陵县| 巴南区| 浦江县| 明水县| 通河县|