找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Binary Representation Learning on Visual Images; Learning to Hash for Zheng Zhang Book 2024 The Editor(s) (if applicable) and The Author(s)

[復(fù)制鏈接]
樓主: 烈酒
11#
發(fā)表于 2025-3-23 10:43:14 | 只看該作者
Scalable Supervised Asymmetric Hashing,earns two distinctive hashing functions by minimizing regression loss for semantic label alignment and encoding loss for refined latent features. Notably, instead of utilizing only partial similarity correlations, SSAH directly employs the full-pairwise similarity matrix to prevent information loss
12#
發(fā)表于 2025-3-23 14:29:44 | 只看該作者
13#
發(fā)表于 2025-3-23 22:02:40 | 只看該作者
14#
發(fā)表于 2025-3-24 00:49:01 | 只看該作者
Ordinal-Preserving Latent Graph Hashing,similarities during the feature learning process. Additionally, well-designed latent subspace learning is incorporated to acquire noise-free latent features based on sparse-constrained supervised learning, fully leveraging the latent under-explored characteristics of data in subspace construction. L
15#
發(fā)表于 2025-3-24 03:50:01 | 只看該作者
16#
發(fā)表于 2025-3-24 08:53:04 | 只看該作者
Semantic-Aware Adversarial Training,criminative and semantic properties jointly. Adversarial examples are generated by maximizing the Hamming distance between hash codes of adversarial samples and mainstay features, validated for efficacy in adversarial attack trials. Notably, this chapter formulates the formalized adversarial trainin
17#
發(fā)表于 2025-3-24 13:19:55 | 只看該作者
shing techniques. These approaches can empower readers to proficiently grasp the fundamental principles of the traditional and state-of-the-art methods in binary representations, modeling, and learning. The the978-981-97-2114-6978-981-97-2112-2
18#
發(fā)表于 2025-3-24 16:41:13 | 只看該作者
19#
發(fā)表于 2025-3-24 22:20:53 | 只看該作者
20#
發(fā)表于 2025-3-25 02:47:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 16:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和林格尔县| 安阳县| 长武县| 东海县| 盐源县| 襄樊市| 辽阳市| 得荣县| 绥棱县| 石台县| 民乐县| 昌吉市| 大悟县| 邯郸市| 登封市| 达日县| 贵溪市| 靖远县| 东源县| 罗城| 浦城县| 防城港市| 沁源县| 玛沁县| 右玉县| 淮滨县| 青神县| 三都| 哈巴河县| 长乐市| 宣恩县| 上林县| 镇坪县| 盈江县| 新宾| 中宁县| 洛宁县| 祥云县| 灵武市| 西和县| 蒲城县|