找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data and Security; 5th International Co Yuan Tian,Tinghuai Ma,Muhammad Khurram Khan Conference proceedings 2024 The Editor(s) (if appli

[復制鏈接]
51#
發(fā)表于 2025-3-30 11:32:59 | 只看該作者
52#
發(fā)表于 2025-3-30 13:28:25 | 只看該作者
53#
發(fā)表于 2025-3-30 20:34:25 | 只看該作者
1865-0929 organized in topical sections as follows:?..Part One:?Big Data & New Method and?Artificial Intelligence & Machine Learning..Part Two:?Data Technology & Network Security and?IoT Security & Privacy Protection..978-981-97-4389-6978-981-97-4390-2Series ISSN 1865-0929 Series E-ISSN 1865-0937
54#
發(fā)表于 2025-3-31 00:01:42 | 只看該作者
The Development of Metalinguistic Abilityhis issue, the method called asymptotic PINNs (A-PINNs) is proposed, which combines the prior knowledge provided by the Shishkin mesh with domain decomposition methods to solve SPDEs effectively. Numerical results indicate that our method shows superiority in handling the singularly perturbed property of SPDEs.
55#
發(fā)表于 2025-3-31 02:00:08 | 只看該作者
56#
發(fā)表于 2025-3-31 08:58:51 | 只看該作者
Big Data and Security978-981-97-4390-2Series ISSN 1865-0929 Series E-ISSN 1865-0937
57#
發(fā)表于 2025-3-31 11:17:49 | 只看該作者
The Development of Metalinguistic Abilityon models have been implemented end-to-end and achieve remarkable performance. To achieve better results on the regions of non-textures, boundaries, and tiny details, it is necessary to effectively combine global context information. However, current models rely on intricate cascade structures or st
58#
發(fā)表于 2025-3-31 16:34:34 | 只看該作者
The Development of Metalinguistic Abilityand phenomena defined by partial differential equations (PDEs). However, PINNs fail to solve PDEs with special properties, such as singularly perturbed differential equations (SPDEs). SPDEs tend to have boundary layers, where the value of the solution increases or decreases drastically. To address t
59#
發(fā)表于 2025-3-31 20:51:11 | 只看該作者
60#
發(fā)表于 2025-4-1 01:00:47 | 只看該作者
https://doi.org/10.1007/978-3-642-74124-1ess to increase productivity. Automating the defect detection process using deep learning such as the YOLO (You Only Look Once) algorithm has shown remarkable performance in object detection tasks. Further integrating the YOLO algorithm with BADGE (Batch Active learning by Diverse Gradient Embedding
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 03:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
肇源县| 云龙县| 凉城县| 长武县| 泰安市| 客服| 崇阳县| 中江县| 安吉县| 承德县| 刚察县| 龙里县| 河东区| 阿图什市| 洱源县| 东乌| 舒城县| 新平| 奉化市| 蚌埠市| 清镇市| 九龙城区| 双桥区| 外汇| 五原县| 黄石市| 华亭县| 木兰县| 冷水江市| 临洮县| 江口县| 凤凰县| 公安县| 苗栗市| 定南县| 遂川县| 宣化县| 临江市| 桐城市| 江陵县| 黔东|