找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics and Knowledge Discovery; 26th International C Robert Wrembel,Silvia Chiusano,Ismail Khalil Conference proceedings 2024 T

[復制鏈接]
查看: 28477|回復: 56
樓主
發(fā)表于 2025-3-21 18:01:52 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Big Data Analytics and Knowledge Discovery
期刊簡稱26th International C
影響因子2023Robert Wrembel,Silvia Chiusano,Ismail Khalil
視頻videohttp://file.papertrans.cn/193/192664/192664.mp4
學科分類Lecture Notes in Computer Science
圖書封面Titlebook: Big Data Analytics and Knowledge Discovery; 26th International C Robert Wrembel,Silvia Chiusano,Ismail Khalil Conference proceedings 2024 T
影響因子.This book constitutes the proceedings of the 26th International Conference on Big Data Analytics and Knowledge Discovery, DaWaK 2024, which too place in Naples, Italy, during August 26-28, 2024.?..The 16 full and 20 short papers included in this book were carefully reviewed and selected from 83 submissions. They were organized in topical sections as follows: Modeling and design; entity matching and similarity; classification; machine learning methods and applications; time series; data repositories;optimization; and data quality and applications.?.
Pindex Conference proceedings 2024
The information of publication is updating

書目名稱Big Data Analytics and Knowledge Discovery影響因子(影響力)




書目名稱Big Data Analytics and Knowledge Discovery影響因子(影響力)學科排名




書目名稱Big Data Analytics and Knowledge Discovery網(wǎng)絡(luò)公開度




書目名稱Big Data Analytics and Knowledge Discovery網(wǎng)絡(luò)公開度學科排名




書目名稱Big Data Analytics and Knowledge Discovery被引頻次




書目名稱Big Data Analytics and Knowledge Discovery被引頻次學科排名




書目名稱Big Data Analytics and Knowledge Discovery年度引用




書目名稱Big Data Analytics and Knowledge Discovery年度引用學科排名




書目名稱Big Data Analytics and Knowledge Discovery讀者反饋




書目名稱Big Data Analytics and Knowledge Discovery讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:56:47 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:23:07 | 只看該作者
Learning Paradigms and?Modelling Methodologies for?Digital Twins in?Process Industry the process industry are a novel contribution in this field. This study aims to address these gaps by (1) systematically analyzing the modelling methodologies (e.g. Convolutional Neural Network, Encoder-Decoder, Hidden Markov Model) and paradigms (e.g. data-driven, physics-based, hybrid) used for D
地板
發(fā)表于 2025-3-22 05:35:56 | 只看該作者
MultiMatch: Low-Resource Generalized Entity Matching Using Task-Conditioned Hyperadapters in?Multitah task before computing the overall loss. Empirically, we observe regulatory effects on the model’s variance. Lastly, we analyze the carbon impact of fine-tuning different systems. Results are promising: our approach generalizes over eight GEM benchmarking tasks while reducing . emissions by 85.0%.
5#
發(fā)表于 2025-3-22 10:36:11 | 只看該作者
6#
發(fā)表于 2025-3-22 15:07:37 | 只看該作者
7#
發(fā)表于 2025-3-22 21:07:20 | 只看該作者
8#
發(fā)表于 2025-3-22 22:44:01 | 只看該作者
Exploring Causal Chain Identification: Comprehensive Insights from?Text and?Knowledge Graphsate the semantic continuity of chains within established knowledge graphs, we curate a chain-structured dataset, highlighting both causal relations and multiple non-causal relations, i.e. . and ., termed .. We noticed that the longer the chains, the fewer instances of existence. However, contrary to
9#
發(fā)表于 2025-3-23 03:03:59 | 只看該作者
Improving Serendipity for?Collaborative Metric Learning Based on?Mutual Proximityalled collaborative metric learning. The proposed method improves existing techniques by refining the embedding space search algorithm, reducing the bias toward popular items in recommendations without altering the original embedding space, thereby enabling users to achieve serendipity. Furthermore,
10#
發(fā)表于 2025-3-23 06:24:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 03:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
镇雄县| 鄂州市| 洞口县| 乌兰浩特市| 波密县| 昭觉县| 上思县| 沾化县| 定远县| 灵石县| 彭山县| 崇礼县| 宁南县| 沁源县| 荣昌县| 武安市| 竹溪县| 台江县| 锡林浩特市| 阳新县| 甘德县| 诸城市| 勐海县| 新平| 延吉市| 镇坪县| 杭锦后旗| 炉霍县| 青铜峡市| 天长市| 崇左市| 页游| 翼城县| 德化县| 灵山县| 茌平县| 南京市| 盐亭县| 开江县| 梓潼县| 亳州市|