找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Belief Functions: Theory and Applications; 8th International Co Yaxin Bi,Anne-Laure Jousselme,Thierry Denoeux Conference proceedings 2024 T

[復(fù)制鏈接]
樓主: 桌前不可入
31#
發(fā)表于 2025-3-27 01:02:22 | 只看該作者
Steel symbol/number: DC04/1.0338,del is fit by minimizing a generalized negative log-likelihood function that accounts for both normal and censored data. Comparative experiments on two real-world datasets demonstrate the very good performance of our model as compared to the state-of-the-art.
32#
發(fā)表于 2025-3-27 03:55:52 | 只看該作者
33#
發(fā)表于 2025-3-27 07:04:54 | 只看該作者
Steel symbol/number: DC04/1.0338,ecision theory, our work builds on these connections. In our paper, we establish pointwise and uniform consistency of an . as an approximation to the true risk function via the derivation of nonasymptotic concentration bounds, and our work serves as the foundation for future investigations of the properties of the MFGF upper risk.
34#
發(fā)表于 2025-3-27 09:50:05 | 只看該作者
35#
發(fā)表于 2025-3-27 16:24:35 | 只看該作者
36#
發(fā)表于 2025-3-27 18:15:58 | 只看該作者
37#
發(fā)表于 2025-3-28 01:11:21 | 只看該作者
Incremental Belief-Peaks Evidential Clusteringation in the realm of big data remains constrained by excessive computational complexity and limited computational resources. To bridge this research gap, this paper introduces an .ncremental .vidential .lustering (IEC) method based on stream data clustering and belief-peaks, a technique that has de
38#
發(fā)表于 2025-3-28 02:30:15 | 只看該作者
39#
發(fā)表于 2025-3-28 09:55:16 | 只看該作者
Dempster-Shafer Credal Probabilistic Circuitsications do not fully account for epistemic uncertainty. To address this, credal probabilistic circuits were introduced, incorporating a way to manage such uncertainty. We propose a novel framework for learning the structure and parameters of credal probabilistic circuits, leveraging the Dempster-Sh
40#
發(fā)表于 2025-3-28 12:44:01 | 只看該作者
Uncertainty Quantification in?Regression Neural Networks Using Likelihood-Based Belief Functions is based on the Gaussian approximation of the likelihood function and the linearization of the network output with respect to the weights. Prediction uncertainty is described by a random fuzzy set inducing a predictive belief function. Preliminary experiments suggest that the approximations are ver
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 15:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
茶陵县| 惠州市| 徐州市| 永康市| 偏关县| 曲水县| 新平| 福海县| 张北县| 宁都县| 晋江市| 家居| 西乌珠穆沁旗| 蒙山县| 和龙市| 罗田县| 卓尼县| 淅川县| 澄江县| 西丰县| 历史| 莎车县| 平邑县| 巨鹿县| 清流县| 浦东新区| 潮安县| 濮阳县| 南木林县| 航空| 合阳县| 焉耆| 朝阳市| 湖口县| 北碚区| 黄石市| 永福县| 沿河| 墨玉县| 芒康县| 金坛市|