找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bayesian Compendium; Marcel van Oijen Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), under exclusive license

[復(fù)制鏈接]
查看: 47741|回復(fù): 60
樓主
發(fā)表于 2025-3-21 16:34:02 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Bayesian Compendium
影響因子2023Marcel van Oijen
視頻videohttp://file.papertrans.cn/193/192626/192626.mp4
發(fā)行地址Covers process-based models as well as simple regression and shows how Bayesian algorithms work in an accessible way.Includes chapters on model emulation, graphical modelling, hierarchical modelling,
圖書(shū)封面Titlebook: Bayesian Compendium;  Marcel van Oijen Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), under exclusive license
影響因子.This book describes how Bayesian methods work. Aiming to demystify the approach, it explains how to parameterize and compare models while accounting for uncertainties in data, model parameters and model structures. Bayesian thinking is not difficult and can be used in virtually every kind of research.? How exactly should data be used in modelling? The literature offers a bewildering variety of techniques (Bayesian calibration, data assimilation, Kalman filtering, model-data fusion, …). This book provides a short and easy guide to all these approaches and more. Written from a unifying Bayesian perspective, it reveals how these methods are related to one another. Basic notions from probability theory are introduced and executable R codes for modelling, data analysis and visualization are included to enhance the book’s practical use. The codes are also freely available online...This thoroughly revised second edition has separate chapters on risk analysis and decision theory. It also features an expanded text on machine learning with an introduction to natural language processing and calibration of neural networks using various datasets (including the famous iris and MNIST). Literatur
Pindex Textbook 2024Latest edition
The information of publication is updating

書(shū)目名稱Bayesian Compendium影響因子(影響力)




書(shū)目名稱Bayesian Compendium影響因子(影響力)學(xué)科排名




書(shū)目名稱Bayesian Compendium網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Bayesian Compendium網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Bayesian Compendium被引頻次




書(shū)目名稱Bayesian Compendium被引頻次學(xué)科排名




書(shū)目名稱Bayesian Compendium年度引用




書(shū)目名稱Bayesian Compendium年度引用學(xué)科排名




書(shū)目名稱Bayesian Compendium讀者反饋




書(shū)目名稱Bayesian Compendium讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:46:20 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:24:43 | 只看該作者
地板
發(fā)表于 2025-3-22 07:07:25 | 只看該作者
Deriving the Posterior Distribution,s the information content of our data. So all that is left is to apply Bayes’ Theorem (Eq. (.)) to derive our desired posterior distribution. Note that when talking about the posterior, we use the phrase ‘deriving the’ distribution rather than ‘a(chǎn)ssigning a’ distribution. That is because Bayes’ Theor
5#
發(fā)表于 2025-3-22 10:45:45 | 只看該作者
Markov Chain Monte Carlo Sampling (MCMC),or—instead we aim to determine the posterior probability distribution for the parameters. Only the full probability distribution adequately represents our state of knowledge. Although this shift in thinking has made rigorous uncertainty quantification possible, it has also created computational prob
6#
發(fā)表于 2025-3-22 15:17:59 | 只看該作者
MCMC and Multivariate Models,fundamentally different from the simpler models we studied in the previous chapters; we can still write them as functions . of their input consisting of covariates . and parameters .. But the output . from the models will be multivariate, e.g. time series of different properties of an ecosystem. Tha
7#
發(fā)表于 2025-3-22 18:20:10 | 只看該作者
8#
發(fā)表于 2025-3-22 21:52:14 | 只看該作者
Discrepancy,ertainty translates into predictive uncertainty. And if we get new data, then we can use Bayes’ Theorem to update the parameter distribution and thereby reduce our predictive uncertainty. So far, so good. But a more difficult problem is that of uncertainty about model structure. We know that all mod
9#
發(fā)表于 2025-3-23 01:41:32 | 只看該作者
10#
發(fā)表于 2025-3-23 09:07:46 | 只看該作者
Gaussian Processes and Model Emulation,MC algorithms. MCMC is especially slow when the model of interest is a process-based model (PBM) with a long run-time. In such cases, it may be good to replace the PBM with a faster surrogate model. The surrogate model will take the same inputs as the original model but calculate the output more qui
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
错那县| 赤水市| 玛纳斯县| 岳普湖县| 长沙县| 班玛县| 神池县| 蒙阴县| 洛阳市| 荣昌县| 文水县| 云南省| 巍山| 临高县| 巢湖市| 平武县| 庆云县| 天等县| 安徽省| 沁水县| 西林县| 峡江县| 喀喇沁旗| 陇川县| 嵊泗县| 安图县| 渝中区| 托克托县| 黔西县| 武山县| 常山县| 崇仁县| 永胜县| 山东| 罗江县| 股票| 新巴尔虎左旗| 海盐县| 广东省| 开江县| 莒南县|