找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Oka Theory in Several Complex Variables; Junjiro Noguchi Textbook 2024 The Editor(s) (if applicable) and The Author(s), under exclus

[復(fù)制鏈接]
樓主: Levelheaded
21#
發(fā)表于 2025-3-25 06:27:10 | 只看該作者
22#
發(fā)表于 2025-3-25 08:27:08 | 只看該作者
https://doi.org/10.1007/4-431-28055-3 combined with the Joku-Iko Principle, and the second is due to H. Grauert (1958) through L. Schwartz’s Fredholm Theorem for compact operators and the bumping method. The comparison is interesting. Each proof has its own advantage.
23#
發(fā)表于 2025-3-25 14:39:31 | 只看該作者
24#
發(fā)表于 2025-3-25 15:56:42 | 只看該作者
Textbook 2024, even for unramified Riemann domains as well...The method that is used in the book is elementary and direct, not relying on the cohomology theory of sheaves nor on the .L.2-?-bar method, but yet reaches the core of the theory with the complete proofs...Two proofs for Levi’s Problem are provided: On
25#
發(fā)表于 2025-3-25 22:13:56 | 只看該作者
26#
發(fā)表于 2025-3-26 00:17:22 | 只看該作者
27#
發(fā)表于 2025-3-26 07:54:55 | 只看該作者
28#
發(fā)表于 2025-3-26 08:57:24 | 只看該作者
,Pseudoconvex Domains I — Problem and Reduction,the results obtained previously, but the path is yet long. Here, introducing the notion of plurisubharmonic (or pseudoconvex) functions, we formulate the Pseudoconvexity Problems and discuss their relations.
29#
發(fā)表于 2025-3-26 14:30:29 | 只看該作者
,Pseudoconvex Domains II —Solution, affirmatively. It is the high point to prove that a bounded domain with strongly pseudoconvex boundary is Stein (Levi’s Problem). We shall give two proofs to it; the first is K. Oka’s original one due to an unpublished paper of 1943 by means of the Fredholm integral equation of the second kind type
30#
發(fā)表于 2025-3-26 18:26:55 | 只看該作者
Motivation: the Achilles Heel of Learninging the hypernymy-type semantic relationship extracted from WordNet in order to improve the results obtained when applying LDA on a set of documents without the use of an external source of knowledge. The experimental results showed an improvement when incorporating hypernyms providing a 1.23 topic coherence for GoogleNews corpus.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 03:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蕲春县| 沾益县| 阳东县| 鹿泉市| 建瓯市| 安国市| 大田县| 景谷| 黑河市| 理塘县| 文化| 共和县| 铜川市| 习水县| 博兴县| 武平县| 长子县| 大冶市| 沾益县| 苏州市| 喀什市| 会理县| 通渭县| 方城县| 株洲县| 交口县| 安塞县| 泉州市| 稻城县| 涿鹿县| 菏泽市| 萨迦县| 宜春市| 嘉善县| 白水县| 泰州市| 民县| 尼玛县| 修武县| 娱乐| 南开区|