找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Business Process Management; 18th International C Dirk Fahland,Chiara Ghidini,Marlon Dumas Conference proceedings 2020 Springer Nature Swit

[復(fù)制鏈接]
樓主: sesamoiditis
51#
發(fā)表于 2025-3-30 11:30:07 | 只看該作者
52#
發(fā)表于 2025-3-30 13:39:44 | 只看該作者
Online Process Monitoring Using Incremental State-Space Expansion: An Exact Algorithmhes for monitoring the correctness of the execution of running processes have been developed in the area of process mining, i.e., online conformance checking. The advantages of monitoring a process’ conformity during its execution are clear, i.e., deviations are detected as soon as they occur and co
53#
發(fā)表于 2025-3-30 19:28:19 | 只看該作者
Looking for Meaning: Discovering Action-Response-Effect Patterns in?Business Processesof process improvement is how response s to an event (action) result in desired or undesired outcomes (effects). From a process perspective, this requires understanding the action-response patterns that occur. Current discovery techniques do not allow organizations to gain such insights. In this pap
54#
發(fā)表于 2025-3-31 00:27:27 | 只看該作者
Extracting Annotations from Textual Descriptions of Processesnel to understand the processes, specially for those ones that cannot interpret formal descriptions like BPMN or Petri nets. In this paper we present a technique based on Natural Language Processing and a query language for tree-based patterns, that extracts annotations describing key process elemen
55#
發(fā)表于 2025-3-31 03:33:31 | 只看該作者
Analyzing Process Concept Drifts Based on Sensor Event Streams During Runtimeg., deviations in sensor event streams such as warehouse temperature in manufacturing or blood pressure in health care. Deviations in the process behavior during runtime can be detected from process event streams as so called concept drifts. Existing work has focused on concept drift detection so fa
56#
發(fā)表于 2025-3-31 08:42:38 | 只看該作者
57#
發(fā)表于 2025-3-31 12:32:45 | 只看該作者
Predictive Business Process Monitoring via Generative Adversarial Nets: The Case of Next Event Predi, several predictive process monitoring methods based on deep learning such as Long Short-Term Memory or Convolutional Neural Network have been proposed to address the problem of next event prediction. However, due to insufficient training data or sub-optimal network configuration and architecture,
58#
發(fā)表于 2025-3-31 16:40:27 | 只看該作者
59#
發(fā)表于 2025-3-31 17:34:21 | 只看該作者
60#
發(fā)表于 2025-4-1 01:14:08 | 只看該作者
Process Minding: Closing the Big Data Gaps process mining along modern data life cycle, highlighting the challenges and suggesting directions in which data science disciplines (., machine learning) may interact with a renewed process mining agenda.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 06:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九江县| 贵港市| 衡东县| 昌宁县| 扶余县| 泊头市| 玉溪市| 台州市| 连州市| 黑河市| 肥城市| 泾源县| 长阳| 枣庄市| 九江市| 会理县| 桐乡市| 石屏县| 邯郸县| 遂宁市| 凤阳县| 德钦县| 永济市| 万州区| 海淀区| 莫力| 普兰店市| 兴海县| 长乐市| 阿勒泰市| 河间市| 梅河口市| 正宁县| 安溪县| 太仓市| 平和县| 泰顺县| 惠东县| 阿图什市| 凤庆县| 安达市|