找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Business Intelligence for Enterprise Internet of Things; Anandakumar Haldorai,Arulmurugan Ramu,Syed Abdul R Book 2020 Springer Nature Swit

[復制鏈接]
樓主: 誓約
21#
發(fā)表于 2025-3-25 06:26:54 | 只看該作者
Business Intelligence for Enterprise Internet of Things978-3-030-44407-5Series ISSN 2522-8595 Series E-ISSN 2522-8609
22#
發(fā)表于 2025-3-25 07:45:35 | 只看該作者
23#
發(fā)表于 2025-3-25 12:33:10 | 只看該作者
24#
發(fā)表于 2025-3-25 16:31:06 | 只看該作者
Well-Graded Families of Relations,r several other innovations. New Industrial Internet of Things (IIoT) platforms aim to solve the most complex challenge of manufacturers: consolidating all production systems into a single data model. They are used in smart cities, security and emergencies, environmental applications, energy, health
25#
發(fā)表于 2025-3-25 20:33:02 | 只看該作者
https://doi.org/10.1007/978-3-540-71697-6e generating numerous amounts of sensitive data that are being communicated over an unprotected network. The manufacturers are providing the least preferences for the device-level security due to resource-constrained properties of the IoT devices. The existing research has shown large computational
26#
發(fā)表于 2025-3-26 01:47:36 | 只看該作者
27#
發(fā)表于 2025-3-26 07:47:41 | 只看該作者
28#
發(fā)表于 2025-3-26 08:56:49 | 只看該作者
https://doi.org/10.1007/978-3-540-71697-6s. Data mining and pattern extraction are challenging with such a quickly increasing amount of data, in terms of both information and time. A promising computing trend known as Big Data can help. Big Data combines large-scale computing with machine learning techniques to build predictive analytics f
29#
發(fā)表于 2025-3-26 13:42:58 | 只看該作者
https://doi.org/10.1007/978-3-319-28489-7ext in developing a dynamic environment where IoT devices can connect and manage their resources on their own. New services are needed to progress the performance and service quality provided by the old services. Self-adaptation is essential for the IoT devices in a dynamic environment. These device
30#
發(fā)表于 2025-3-26 18:53:53 | 只看該作者
https://doi.org/10.1007/978-3-319-28489-7ectivity, energy, and memory. If the virtual machine is placed nearer to the Internet of Things nodes, it increases their efficiency by manifold. Virtual machine placement optimization is a trial and error method. Many new algorithms will be proposed and their results are tested against the desired
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
乡城县| 囊谦县| 庄河市| 崇信县| 平果县| 都安| 开平市| 阿拉善右旗| 抚宁县| 康定县| 永州市| 河北省| 泌阳县| 和林格尔县| 嘉定区| 上虞市| 黄骅市| 高唐县| 磐石市| 寿光市| 宜川县| 长子县| 新田县| 兴文县| 离岛区| 静乐县| 名山县| 陆良县| 朝阳区| 海安县| 河源市| 泸水县| 东港市| 磐石市| 行唐县| 伽师县| 开原市| 晋宁县| 龙门县| 黔江区| 洛隆县|