找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Building Generative AI-Powered Apps; A Hands-on Guide for Aarushi Kansal Book 2024 Aarushi Kansal 2024 Artificial Intelligence.Generative A

[復(fù)制鏈接]
樓主: estradiol
11#
發(fā)表于 2025-3-23 11:57:43 | 只看該作者
12#
發(fā)表于 2025-3-23 17:54:26 | 只看該作者
13#
發(fā)表于 2025-3-23 18:12:26 | 只看該作者
14#
發(fā)表于 2025-3-24 00:24:03 | 只看該作者
https://doi.org/10.1007/978-3-540-24785-2bot that answered your questions . could remember the rest of your conversation. This allowed the LLM to become “smarter” by getting context from history. Your chatbot also had access to up-to-date, personal information via a vector database, meaning it was able to answer questions beyond what it wa
15#
發(fā)表于 2025-3-24 05:59:48 | 只看該作者
https://doi.org/10.1007/978-3-540-24785-2 your day for you. This agent was able to reason and have access to “the world” via API integrations (the so-called tools). This was a fairly simple application, but it was still autonomous . and when AI is autonomous, there’s always space for things to go wrong if proper safeguards are not in place
16#
發(fā)表于 2025-3-24 07:35:16 | 只看該作者
https://doi.org/10.1007/978-3-540-24785-2rdrails around ensuring your LLM stays on topic, executes the right flow, and is able to block users. You looked into NeMo and understood how it combines LLMs, Colang, and embedding models to create a generalized set of rules, based on natural language rules you give it.
17#
發(fā)表于 2025-3-24 12:52:55 | 只看該作者
Mathematical Location and Land Use Theoryn models. You learned about the whys, whats, and hows of fine-tuning. You learned that fine-tuning can be less resource and time consuming than building and training a model from scratch. The previous chapter talked to you about what happens to the neural network during the fine-tuning process . spe
18#
發(fā)表于 2025-3-24 18:26:23 | 只看該作者
Mathematical Location and Land Use Theory as summarization. However, prompt engineering goes beyond this and is increasingly becoming a booming and interesting area . with new research and styles of prompting being proposed regularly. Prompt engineering or becoming a prompt engineer is an emerging but highly relevant role in the new wave o
19#
發(fā)表于 2025-3-24 20:48:37 | 只看該作者
20#
發(fā)表于 2025-3-25 02:01:20 | 只看該作者
Monitoring,In Chapter 6, you learned how to fine-tune Llama 2 with using LoRA, a technique to make your model knowledgeable in a new domain, one it hasn’t specifically been trained on.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 00:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
固安县| 扬中市| 同江市| 晴隆县| 博野县| 和田市| 谢通门县| 凤山县| 海丰县| 平昌县| 龙南县| 民和| 闸北区| 临城县| 梁河县| 安岳县| 普兰县| 长汀县| 彝良县| 山阴县| 竹山县| 论坛| 怀宁县| 万源市| 侯马市| 南靖县| 南郑县| 土默特左旗| 夹江县| 民丰县| 昭通市| 尼勒克县| 凤台县| 织金县| 伊通| 灵寿县| 霍州市| 宜兰县| 双城市| 铜陵市| 山东|