找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Building Computer Vision Applications Using Artificial Neural Networks; With Step-by-Step Ex Shamshad Ansari Book 20201st edition Shamshad

[復(fù)制鏈接]
查看: 56098|回復(fù): 49
樓主
發(fā)表于 2025-3-21 18:18:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱(chēng)Building Computer Vision Applications Using Artificial Neural Networks
期刊簡(jiǎn)稱(chēng)With Step-by-Step Ex
影響因子2023Shamshad Ansari
視頻videohttp://file.papertrans.cn/192/191610/191610.mp4
發(fā)行地址Contains real examples that you can implement and modify to build useful computer vision systems.Gives line-by-line explanations of computer vision working code examples.Explains training neural netwo
圖書(shū)封面Titlebook: Building Computer Vision Applications Using Artificial Neural Networks; With Step-by-Step Ex Shamshad Ansari Book 20201st edition Shamshad
影響因子.Apply computer vision and machine learning concepts in developing business and industrial applications ?using a practical, step-by-step approach.?..The book comprises four main sections starting with setting up your programming environment and configuring your computer with all the prerequisites to run the code examples. Section 1 covers the basics of image and video processing with code examples of how to manipulate and extract useful information from the images. You will mainly use OpenCV with Python to work with examples in this section.?..Section 2 describes machine learning and neural network concepts as applied to computer vision. You will learn different algorithms of the neural network, such as convolutional neural network (CNN), region-based convolutional neural network (R-CNN), and YOLO. In this section, you will also learn how to train, tune, and manage neural networks for computer vision. Section 3 provides step-by-step examples of developing business and industrial applications, such as facial recognition in video surveillance and surface defect detection in manufacturing.?..The final section is about training neural networks involving a large number of images on clou
Pindex Book 20201st edition
The information of publication is updating

書(shū)目名稱(chēng)Building Computer Vision Applications Using Artificial Neural Networks影響因子(影響力)




書(shū)目名稱(chēng)Building Computer Vision Applications Using Artificial Neural Networks影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Building Computer Vision Applications Using Artificial Neural Networks網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Building Computer Vision Applications Using Artificial Neural Networks網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Building Computer Vision Applications Using Artificial Neural Networks被引頻次




書(shū)目名稱(chēng)Building Computer Vision Applications Using Artificial Neural Networks被引頻次學(xué)科排名




書(shū)目名稱(chēng)Building Computer Vision Applications Using Artificial Neural Networks年度引用




書(shū)目名稱(chēng)Building Computer Vision Applications Using Artificial Neural Networks年度引用學(xué)科排名




書(shū)目名稱(chēng)Building Computer Vision Applications Using Artificial Neural Networks讀者反饋




書(shū)目名稱(chēng)Building Computer Vision Applications Using Artificial Neural Networks讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:16:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:57:48 | 只看該作者
Building Computer Vision Applications Using Artificial Neural Networks978-1-4842-5887-3
地板
發(fā)表于 2025-3-22 08:03:03 | 只看該作者
ial applications, such as facial recognition in video surveillance and surface defect detection in manufacturing.?..The final section is about training neural networks involving a large number of images on clou978-1-4842-5887-3
5#
發(fā)表于 2025-3-22 09:33:46 | 只看該作者
Techniques of Image Processing,other application. In most cases, these input images are converted from one form into another. For example, we may need to resize, rotate, or change their colors. In some cases, we may need to remove the background pixels or merge two images. In other cases, we may need to find the boundaries around
6#
發(fā)表于 2025-3-22 13:52:59 | 只看該作者
Deep Learning in Object Detection,During classification tasks, we predict the class of the entire image and do not care what kind of objects are in the image. In this chapter, we will detect objects and their locations within the image.
7#
發(fā)表于 2025-3-22 17:54:48 | 只看該作者
Practical Example: Object Tracking in Videos, set of images, object detection provides the ability to identify one or more objects in an image, and object tracking provides the ability to track a detected object across a set of images. In previous chapters, we explored the technical aspects of training deep learning models to detect objects. I
8#
發(fā)表于 2025-3-22 22:16:22 | 只看該作者
Practical Example: Face Recognition,ct and locate the position of the face in the input image. This is a typical object detection task like we learned about in the previous chapters. After the face is detected, a feature set, also called a . or ., is created from various key points on the face. A human face has 80 nodal points or dist
9#
發(fā)表于 2025-3-23 02:03:36 | 只看該作者
Computer Vision Modeling on the Cloud,rk depending on the number of training samples, network configuration, and available hardware resources. A single GPU may not be feasible to train a complex network involving large numbers of training images. The models need to be trained on multiple GPUs. Only a limited number of GPUs can be instal
10#
發(fā)表于 2025-3-23 08:06:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九寨沟县| 民权县| 汉寿县| 金平| 油尖旺区| 广南县| 麻阳| 阜新| 龙胜| 南京市| 兴山县| 河间市| 镇宁| 克东县| 六枝特区| 右玉县| 罗江县| 葫芦岛市| 甘肃省| 东阳市| 贵州省| 城步| 西贡区| 延寿县| 江陵县| 贡嘎县| 沧州市| 闻喜县| 昌邑市| 丹巴县| 深水埗区| 饶阳县| 抚顺市| 建阳市| 荥阳市| 罗平县| 松桃| 日喀则市| 彰武县| 宁蒗| 永德县|