找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brownian Motion and its Applications to Mathematical Analysis; école d‘été de Proba Krzysztof Burdzy Book 2014 Springer International Publi

[復(fù)制鏈接]
樓主: 粘上
11#
發(fā)表于 2025-3-23 13:20:28 | 只看該作者
978-3-319-04393-7Springer International Publishing Switzerland 2014
12#
發(fā)表于 2025-3-23 16:57:43 | 只看該作者
Architekt Martin Kohlbauer - Ein Portrait,The chapter provides a short general review of Brownian motion and its place in probability theory. We also review some basic facts and formulas.
13#
發(fā)表于 2025-3-23 20:06:47 | 只看該作者
,Hauptschule Zwentendorf 2000–2003,This chapter is devoted to new probabilistic proofs of results previously proved using analytic techniques.
14#
發(fā)表于 2025-3-23 22:50:41 | 只看該作者
,Wohnhof Fuchsenfeld 1999–2003,This chapter is devoted to a general overview of the “hot spots” conjecture. To this day, the conjecture has been proved only for a very limited family of domains. Hence, it has a great potential as a source of interesting problems (related questions) and as a testing ground for new techniques.
15#
發(fā)表于 2025-3-24 04:12:10 | 只看該作者
,Fernheizwerk Süd, Wien 23 1993–1996,This chapter contains some simple facts and more advanced results on Nuemann eigenfunctions related to the hot spots conjecture.
16#
發(fā)表于 2025-3-24 09:18:51 | 只看該作者
17#
發(fā)表于 2025-3-24 14:13:05 | 只看該作者
18#
發(fā)表于 2025-3-24 16:11:04 | 只看該作者
https://doi.org/10.1057/9781137275523The hot spots problem is closely related to the problem of finding the location of the nodal line of the first non-constant eigenfunction. The chapter contains a few results on the latter problem.
19#
發(fā)表于 2025-3-24 21:31:09 | 只看該作者
20#
發(fā)表于 2025-3-24 23:29:43 | 只看該作者
Probabilistic Proofs of Classical Theorems,This chapter is devoted to new probabilistic proofs of results previously proved using analytic techniques.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 23:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
威宁| 屯留县| 卢湾区| 左权县| 敖汉旗| 盈江县| 邵阳县| 海城市| 利辛县| 广德县| 广元市| 营山县| 新安县| 荥阳市| 衡南县| 利辛县| 格尔木市| 巴南区| 雷州市| 盈江县| 台东县| 宁阳县| 英德市| 萝北县| 高雄市| 资兴市| 汉沽区| 彭州市| 前郭尔| 江门市| 灌南县| 广州市| 石家庄市| 新竹县| 霍林郭勒市| 枣强县| 高台县| 闸北区| 白玉县| 禄丰县| 安国市|