找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brauer Groups and Obstruction Problems; Moduli Spaces and Ar Asher Auel,Brendan Hassett,Bianca Viray Book 2017 Springer International Publi

[復(fù)制鏈接]
樓主: 信賴
11#
發(fā)表于 2025-3-23 11:15:34 | 只看該作者
12#
發(fā)表于 2025-3-23 16:57:43 | 只看該作者
13#
發(fā)表于 2025-3-23 18:05:27 | 只看該作者
Ferrimagnetic Properties of MagnetiteWe study K3 surfaces over non-closed fields and relate the notion of derived equivalence to arithmetic problems.
14#
發(fā)表于 2025-3-24 00:29:34 | 只看該作者
15#
發(fā)表于 2025-3-24 06:11:29 | 只看該作者
Thermomechanics of Ferromagnetic Bodies,Let . be the function field of a smooth projective surface . over a finite field .. In this article, following the work of Parimala and Suresh, we establish a local-global principle for the divisibility of elements in . by elements in ..
16#
發(fā)表于 2025-3-24 07:02:28 | 只看該作者
17#
發(fā)表于 2025-3-24 13:10:28 | 只看該作者
The Brauer Group Is Not a Derived Invariant,In this short note we observe that the recent examples of derived-equivalent Calabi–Yau 3-folds with diffierent fundamental groups also have diffierent Brauer groups, using a little topological K-theory.
18#
發(fā)表于 2025-3-24 17:23:20 | 只看該作者
Twisted Derived Equivalences for Affine Schemes,We show how work of Rickard and To?n completely resolves the question of when two twisted affine schemes are derived equivalent.
19#
發(fā)表于 2025-3-24 21:48:25 | 只看該作者
20#
發(fā)表于 2025-3-25 02:38:14 | 只看該作者
Universal Unramified Cohomology of Cubic Fourfolds Containing a Plane,We prove the universal triviality of the third unramified cohomology group of a very general complex cubic fourfold containing a plane. The proof uses results on the unramified cohomology of quadrics due to Kahn, Rost, and Sujatha.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 12:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灌阳县| 鹤庆县| 玛曲县| 翁牛特旗| 榆树市| 海淀区| 山丹县| 沅陵县| 都安| 自治县| 浮梁县| 永德县| 平泉县| 沙河市| 县级市| 米易县| 固安县| 屏东县| 会同县| 济宁市| 吉木萨尔县| 佳木斯市| 墨竹工卡县| 于都县| 贵南县| 彭泽县| 阿城市| 叙永县| 霍林郭勒市| 南部县| 尉犁县| 肃宁县| 武川县| 高淳县| 卢氏县| 福州市| 遂川县| 邓州市| 安达市| 五常市| 喀什市|