找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Branching Random Walks; école d‘été de Proba Zhan Shi Book 2015 Springer International Publishing Switzerland 2015 60J80,60J85,60G50 60K37.

[復(fù)制鏈接]
樓主: CLIP
21#
發(fā)表于 2025-3-25 04:38:00 | 只看該作者
Plasma Magnetic Control Probleme goal of this brief chapter is to give an . of the spinal decomposition theorem, in the simple setting of the Galton–Watson tree. If you are already familiar with any form of the spinal decomposition theorem, this chapter can be skipped.
22#
發(fā)表于 2025-3-25 10:37:21 | 只看該作者
23#
發(fā)表于 2025-3-25 15:23:30 | 只看該作者
24#
發(fā)表于 2025-3-25 16:33:49 | 只看該作者
Branching Random Walks with Selection,roof is given, though most of the ingredients needed in the proofs have already been seen by us in the previous chapters..The present chapter is devoted to a few models of branching random walks in presence of certain selection criteria.
25#
發(fā)表于 2025-3-25 20:27:31 | 只看該作者
26#
發(fā)表于 2025-3-26 01:21:34 | 只看該作者
https://doi.org/10.1007/978-1-84800-324-8ven level along the spine. The power of the spinal decomposition theorem will be seen via a few case studies in the following chapters. Here, we prove in Sect.?4.8, as a first application, the Biggins martingale convergence theorem for the branching random walk, already stated in Sect.?3.2 as Theorem?3.2.
27#
發(fā)表于 2025-3-26 07:51:15 | 只看該作者
The Spinal Decomposition Theorem,ven level along the spine. The power of the spinal decomposition theorem will be seen via a few case studies in the following chapters. Here, we prove in Sect.?4.8, as a first application, the Biggins martingale convergence theorem for the branching random walk, already stated in Sect.?3.2 as Theorem?3.2.
28#
發(fā)表于 2025-3-26 10:55:23 | 只看該作者
Book 2015positions over time. ..Starting with the simple case of Galton-Watson trees, the text primarily concentrates on exploiting, in various contexts, the spinal structure of branching random walks. The notes end with some applications to biased random walks on trees..
29#
發(fā)表于 2025-3-26 15:45:40 | 只看該作者
30#
發(fā)表于 2025-3-26 19:10:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潞城市| 察哈| 廉江市| 嵩明县| 威宁| 六安市| 延安市| 万山特区| 伊宁县| 西贡区| 始兴县| 泰宁县| 井冈山市| 花莲市| 武平县| 都江堰市| 上思县| 怀仁县| 宜章县| 洪洞县| 蒙阴县| 柯坪县| 丰城市| 郧西县| 道真| 普洱| 顺义区| 抚松县| 五莲县| 峨眉山市| 共和县| 邢台市| 莲花县| 桓台县| 会昌县| 余姚市| 涡阳县| 乌拉特中旗| 宝山区| 芮城县| 海兴县|