找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Branching Processes and Their Applications; Inés M. del Puerto,Miguel González,Alfonso Ramos Book 2016 Springer International Publishing S

[復(fù)制鏈接]
樓主: solidity
21#
發(fā)表于 2025-3-25 05:51:37 | 只看該作者
22#
發(fā)表于 2025-3-25 09:34:58 | 只看該作者
23#
發(fā)表于 2025-3-25 13:21:35 | 只看該作者
24#
發(fā)表于 2025-3-25 17:54:36 | 只看該作者
25#
發(fā)表于 2025-3-25 22:10:40 | 只看該作者
26#
發(fā)表于 2025-3-26 02:49:44 | 只看該作者
Coalescence in Branching Processesct distribution of .. and its limit as . goes to infinity for the single type discrete case. We consider four cases: explosive (mean infinity), supercritical, critical and subcritical. We apply these to study branching random walks. A number of open problems are listed at the end.
27#
發(fā)表于 2025-3-26 06:50:26 | 只看該作者
Static Properties of Magnetic Bubbles, supercritical case for various classes of immigration rates. Some of the limiting results offer generalizations of the classical result obtained in Sevastyanov (Theory Probab Appl 2:339–348, 1957). We also derive novel LLN and a CLT that arise from the fact that the process is time-inhomogeneous.
28#
發(fā)表于 2025-3-26 10:08:51 | 只看該作者
29#
發(fā)表于 2025-3-26 16:39:15 | 只看該作者
Supercritical Sevastyanov Branching Processes with Non-homogeneous Poisson Immigration supercritical case for various classes of immigration rates. Some of the limiting results offer generalizations of the classical result obtained in Sevastyanov (Theory Probab Appl 2:339–348, 1957). We also derive novel LLN and a CLT that arise from the fact that the process is time-inhomogeneous.
30#
發(fā)表于 2025-3-26 18:15:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长宁区| 来安县| 泗水县| 太保市| 海门市| 佳木斯市| 抚顺市| 新密市| 上杭县| 多伦县| 荥经县| 平舆县| 黑龙江省| 青海省| 灵台县| 钟祥市| 贞丰县| 集贤县| 巩留县| 金山区| 忻州市| 于都县| 迁安市| 东安县| 五河县| 星座| 遂昌县| 治多县| 响水县| 桂平市| 昂仁县| 清涧县| 祁连县| 雅江县| 绥德县| 铜梁县| 英吉沙县| 安阳县| 东兰县| 钟祥市| 沛县|