找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brainlesion:Glioma, Multiple Sclerosis, Strokeand Traumatic Brain Injuries; 8th International Wo Spyridon Bakas,Alessandro Crimi,Reuben Dor

[復(fù)制鏈接]
樓主: Washington
41#
發(fā)表于 2025-3-28 15:41:49 | 只看該作者
42#
發(fā)表于 2025-3-28 20:24:54 | 只看該作者
P. Cerletti,F. Bonomi,S. Paganif segmentation masks of the fixed and moving volumes. These masks are then used to attend to the input volume, which are then provided as inputs to a registration network in the second step. The registration network computes the deformation field to perform the alignment between the fixed and the mo
43#
發(fā)表于 2025-3-28 23:03:37 | 只看該作者
Molar Masses and Molar Mass Distributionse appearance changes. This paper describes our contribution to the registration of the longitudinal brain MRI task of the Brain Tumor Sequence Registration Challenge 2022 (BraTS-Reg 2022). We developed an enhanced unsupervised learning-based method that extends our previously developed registration
44#
發(fā)表于 2025-3-29 03:28:47 | 只看該作者
45#
發(fā)表于 2025-3-29 10:33:57 | 只看該作者
https://doi.org/10.1007/978-1-4615-7367-8In this challenge, we proposed an unsupervised domain adaptation framework for cross-modality vestibular schwannoma (VS) and cochlea segmentation and Koos grade prediction. We learn the shared representation from both ceT1 and hrT2 images and recover another modality from the latent representation,
46#
發(fā)表于 2025-3-29 13:09:39 | 只看該作者
47#
發(fā)表于 2025-3-29 15:43:58 | 只看該作者
Polymer crystallization theories,sing cross-modality segmentation performance by distilling knowledge from a label-rich source domain to a target domain without labels. In this work, we propose a multi-scale self-ensembling based UDA framework for automatic segmentation of two key brain structures?. Vestibular Schwannoma (VS) and C
48#
發(fā)表于 2025-3-29 23:21:42 | 只看該作者
Timothy A. Springer,Jay C. Unkelessy leveraging labeled contrast-enhanced T1 scans. The 2022 edition extends the segmentation task by including multi-institutional scans. In this work, we proposed an unpaired cross-modality segmentation framework using data augmentation and hybrid convolutional networks. Considering heterogeneous dis
49#
發(fā)表于 2025-3-30 00:38:56 | 只看該作者
Dolph O. Adams,Michael G. Hannaare contrast-enhanced T1 (ceT1), with a growing interest in high-resolution T2 images (hrT2) to replace ceT1, which involves the use of a contrast agent. As hrT2 images are currently scarce, it is less likely to train robust machine learning models to segment VS or other brain structures. In this wo
50#
發(fā)表于 2025-3-30 05:06:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 15:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石渠县| 澄迈县| 菏泽市| 大冶市| 洛阳市| 丰镇市| 宁强县| 南安市| 呼伦贝尔市| 新沂市| 雷山县| 安阳县| 司法| 从化市| 胶州市| 佛冈县| 民权县| 措勤县| 南乐县| 蓝山县| 三台县| 阿荣旗| 当阳市| 洛隆县| 平舆县| 锡林郭勒盟| 白朗县| 新闻| 甘洛县| 鹤庆县| 古蔺县| 新野县| 右玉县| 衡东县| 神木县| 贵阳市| 靖宇县| 玛多县| 遵义市| 英吉沙县| 松溪县|