找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; First International Alessandro Crimi,Bjoern Menze,Heinz Hand

[復(fù)制鏈接]
查看: 44322|回復(fù): 57
樓主
發(fā)表于 2025-3-21 16:39:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
期刊簡(jiǎn)稱First International
影響因子2023Alessandro Crimi,Bjoern Menze,Heinz Handels
視頻videohttp://file.papertrans.cn/191/190321/190321.mp4
發(fā)行地址Includes supplementary material:
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; First International  Alessandro Crimi,Bjoern Menze,Heinz Hand
影響因子.This bookconstitutes the thoroughly refereed post-workshop proceedings of theInternational Workshop on Brain Lesion (BrainLes), Brain Tumor Segmentation (BRATS) andIschemic Stroke Lesion Segmentation (ISLES), held in Munich, Germany, onOctober 5, 2015, in conjunction with the International Conference on Conferenceon Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015...The 25papers presented in this volume were carefully reviewed and selected from 28submissions. They are grouped around the following topics: brain lesion imageanalysis; brain tumor image segmentation; ischemic stroke lesion imagesegmentation..
Pindex Conference proceedings 2016
The information of publication is updating

書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries影響因子(影響力)




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries影響因子(影響力)學(xué)科排名




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries網(wǎng)絡(luò)公開度




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries被引頻次




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries被引頻次學(xué)科排名




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries年度引用




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries年度引用學(xué)科排名




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries讀者反饋




書目名稱Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:35:35 | 只看該作者
Deep Convolutional Neural Networks for the Segmentation of Gliomas in Multi-sequence MRIs and Low Grade Gliomas we trained two different architectures, one for each grade. Using the proposed method it was possible to obtain promising results in the 2015 Multimodal Brain Tumor Segmentation (BraTS) data set, as well as the second position in the on-site challenge.
板凳
發(fā)表于 2025-3-22 01:31:05 | 只看該作者
地板
發(fā)表于 2025-3-22 04:36:50 | 只看該作者
5#
發(fā)表于 2025-3-22 10:44:44 | 只看該作者
Conference proceedings 2016ce on Conferenceon Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015...The 25papers presented in this volume were carefully reviewed and selected from 28submissions. They are grouped around the following topics: brain lesion imageanalysis; brain tumor image segmentation; ischemic stroke lesion imagesegmentation..
6#
發(fā)表于 2025-3-22 15:11:59 | 只看該作者
Macroevolution in Human Prehistory segmentation and exclude voxels labeled as CSF, ventricles and hemorrhagic lesion and then automatically detect the lesion load. Preliminary results demonstrate that our method is coherent with expert opinion in the identification of lesions. We outline the challenges posed in automatic analysis for TBI.
7#
發(fā)表于 2025-3-22 19:56:04 | 只看該作者
https://doi.org/10.1057/9780230604315s and Low Grade Gliomas we trained two different architectures, one for each grade. Using the proposed method it was possible to obtain promising results in the 2015 Multimodal Brain Tumor Segmentation (BraTS) data set, as well as the second position in the on-site challenge.
8#
發(fā)表于 2025-3-23 00:40:21 | 只看該作者
Wolfgang Sch?nfeld,Stjepan Mutakhat parameter learning leads to comparable or even improved performance. In addition, we also performed experiments to study the impact of the composition of training data on the final segmentation performance. We found that models trained on mixed data sets achieve reasonable performance compared to models trained on stratified data.
9#
發(fā)表于 2025-3-23 02:21:47 | 只看該作者
Rituparna Bose,Alexander J. Bartholomewal features, which have the benefit of no computational overhead and easy extraction from the MR images. On MR images of 18 patients with multiple sclerosis the proposed method achieved the median Dice similarity of 0.73, sensitivity of 0.90 and positive predictive value of 0.61, which indicate accurate segmentation of white-matter lesions.
10#
發(fā)表于 2025-3-23 08:54:15 | 只看該作者
Principle Of Social Subsistenceases during the training phase of the BRAin Tumor Segmentation (BRATS) 2015 challenge and report promising results. During the testing phase, the algorithm was additionally evaluated in 53 unseen cases, achieving the best performance among the competing methods.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 08:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台江县| 上饶县| 克山县| 白朗县| 察雅县| 岳阳县| 池州市| 民丰县| 龙门县| 富蕴县| 永丰县| 吉隆县| 东方市| 辛集市| 盐城市| 桃源县| 郴州市| 惠州市| 紫阳县| 西贡区| 绥滨县| 桐柏县| 和硕县| 无极县| 宿州市| 九江市| 巴东县| 隆子县| 深水埗区| 嫩江县| 海口市| 类乌齐县| 河东区| 右玉县| 交口县| 内黄县| 兴义市| 濮阳县| 西乌珠穆沁旗| 榆中县| 洛南县|