找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Braid Groups; Christian Kassel,Vladimir Turaev Textbook 2008 Springer-Verlag New York 2008 Burau.Garside.Homotopy.Iwahori-Hecke.Markov.Per

[復(fù)制鏈接]
樓主: indulge
21#
發(fā)表于 2025-3-25 06:50:49 | 只看該作者
22#
發(fā)表于 2025-3-25 10:34:07 | 只看該作者
,Lévy Processes and Their Characteristics,The principal aim of this chapter is to show that the braid groups have a natural total order.
23#
發(fā)表于 2025-3-25 14:14:53 | 只看該作者
24#
發(fā)表于 2025-3-25 18:30:17 | 只看該作者
,Other characterizations of the Lê cycles,We recall several basic notions from the theory of fibrations needed in the main text. For details, the reader is referred, for instance, to [FR84, Chap. 5].
25#
發(fā)表于 2025-3-25 22:14:28 | 只看該作者
Nucleins?uren – Struktur und FunktionWe briefly discuss a family of finite-dimensional quotients of the braid group algebras due to J. Murakami, J. Birman, and H. Wenzl. We also outline an interpretation of the Lawrence—Krammer—Bigelow representation of Section 3.5 in terms of representations of these algebras.
26#
發(fā)表于 2025-3-26 02:38:40 | 只看該作者
Hartmut Follmann,Peter C. HeinrichWe give here a brief introduction to so-called left self-distributive sets, which are closely related to braid groups.
27#
發(fā)表于 2025-3-26 08:15:27 | 只看該作者
28#
發(fā)表于 2025-3-26 10:01:34 | 只看該作者
29#
發(fā)表于 2025-3-26 12:37:46 | 只看該作者
An Order on the Braid Groups,The principal aim of this chapter is to show that the braid groups have a natural total order.
30#
發(fā)表于 2025-3-26 18:15:37 | 只看該作者
Presentations of SL2(Z) and PSL2(Z),Let . be the group of . matrices with entries in . and with determinant 1. The center of . is the group of order 2 generated by the scalar matrix ., where .. is the unit matrix. The quotient group.is called the modular group; it can be identified with the group of rational functions on . of the form ., where ., ., ., . are integers such that ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
佳木斯市| 开阳县| 尉犁县| 建湖县| 呼和浩特市| 上杭县| 昌平区| 泉州市| 刚察县| 湄潭县| 澎湖县| 永修县| 朝阳市| 东方市| 临高县| 昭平县| 陵水| 五莲县| 女性| 中卫市| 砀山县| 襄城县| 柳河县| 宁远县| 黄骅市| 永丰县| 普定县| 银川市| 临泽县| 邯郸市| 宜兴市| 南城县| 沽源县| 台中市| 茌平县| 剑川县| 中西区| 阿勒泰市| 乌拉特后旗| 葵青区| 堆龙德庆县|