找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bounded and Compact Integral Operators; David E. Edmunds,Vakhtang Kokilashvili,Alexander M Book 2002 Springer Science+Business Media B.V.

[復制鏈接]
樓主: injurious
21#
發(fā)表于 2025-3-25 03:31:52 | 只看該作者
22#
發(fā)表于 2025-3-25 11:14:25 | 只看該作者
23#
發(fā)表于 2025-3-25 12:26:30 | 只看該作者
24#
發(fā)表于 2025-3-25 18:49:19 | 只看該作者
978-90-481-6018-1Springer Science+Business Media B.V. 2002
25#
發(fā)表于 2025-3-25 22:39:14 | 只看該作者
26#
發(fā)表于 2025-3-26 01:09:45 | 只看該作者
Lunar and Planetary Webcam User‘s Guides to give complete descriptions of those pairs of weight functions for which these fractional integrals generate operators which are bounded or compact from one weighted Banach function space into another. This problem was studied earlier by many authors, for instance, for fractional Riemann-Liouvil
27#
發(fā)表于 2025-3-26 04:45:30 | 只看該作者
,Webcams, Plus a “Quick Start” Guide,mander type. We establish ..↑.. (1 < . ≤ . < ∞) boundedness criteria which are very easy to verify. The proofs depend heavily on the results on the Riemann-Liouville operator which were derived in the previous chapter. Then follows a study, from the point of view of boundedness and compactness, of p
28#
發(fā)表于 2025-3-26 09:40:29 | 只看該作者
Planetary Webcams and Their Alternatives,rest in ball fractional integrals (BFI’s) arises from the fact that Riesz potentials ... over a ball . may be represented by a composition of such integrals. This enables one to derive necessary and sufficient solvability conditions for the equation I.φ = . in Lebesgue spaces with power weights and
29#
發(fā)表于 2025-3-26 14:36:10 | 只看該作者
30#
發(fā)表于 2025-3-26 20:48:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 14:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
体育| 德清县| 临猗县| 金门县| 孟村| 牟定县| 广安市| 仁怀市| 金溪县| 三门峡市| 大余县| 乐山市| 安义县| 隆林| 大埔县| 郯城县| 临漳县| 科技| 祁东县| 绥中县| 贡嘎县| 阜阳市| 崇左市| 黔东| 郑州市| 临沧市| 红安县| 九台市| 海丰县| 宜昌市| 长宁县| 灌阳县| 林芝县| 镇远县| 射洪县| 宜兰市| 山丹县| 武安市| 偏关县| 栖霞市| 鄂伦春自治旗|