找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bounded and Compact Integral Operators; David E. Edmunds,Vakhtang Kokilashvili,Alexander M Book 2002 Springer Science+Business Media B.V.

[復(fù)制鏈接]
樓主: injurious
11#
發(fā)表于 2025-3-23 12:29:56 | 只看該作者
12#
發(fā)表于 2025-3-23 17:26:36 | 只看該作者
,A Beginner’s Guide to Using a Webcam,In this chapter we present results concerning the boundedness and compactness of integral transforms generated by various types of fractional integrals.
13#
發(fā)表于 2025-3-23 18:07:13 | 只看該作者
14#
發(fā)表于 2025-3-23 22:13:27 | 只看該作者
15#
發(fā)表于 2025-3-24 03:05:34 | 只看該作者
16#
發(fā)表于 2025-3-24 08:14:12 | 只看該作者
Problems,In this section we list some problems which seem to have resisted solution up to now.
17#
發(fā)表于 2025-3-24 11:42:49 | 只看該作者
Ball Fractional Integrals,rest in ball fractional integrals (BFI’s) arises from the fact that Riesz potentials ... over a ball . may be represented by a composition of such integrals. This enables one to derive necessary and sufficient solvability conditions for the equation I.φ = . in Lebesgue spaces with power weights and to construct the solution in closed form.
18#
發(fā)表于 2025-3-24 16:13:33 | 只看該作者
19#
發(fā)表于 2025-3-24 21:26:35 | 只看該作者
20#
發(fā)表于 2025-3-24 23:51:10 | 只看該作者
Planetary Webcams and Their Alternatives,rest in ball fractional integrals (BFI’s) arises from the fact that Riesz potentials ... over a ball . may be represented by a composition of such integrals. This enables one to derive necessary and sufficient solvability conditions for the equation I.φ = . in Lebesgue spaces with power weights and to construct the solution in closed form.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 21:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
饶阳县| 河源市| 江孜县| 合作市| 泸州市| 江川县| 鄂托克旗| 黑河市| 泰兴市| 大埔区| 牡丹江市| 于田县| 习水县| 广宁县| 永兴县| 靖江市| 杭锦后旗| 慈利县| 蓬溪县| 安岳县| 乾安县| 厦门市| 仲巴县| 浦北县| 阳江市| 平利县| 同仁县| 新竹市| 方山县| 南充市| 郴州市| 延川县| 洪泽县| 阿瓦提县| 柳林县| 光山县| 德安县| 鄂伦春自治旗| 长宁区| 常山县| 九龙县|