找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bounded Noises in Physics, Biology, and Engineering; Alberto d‘Onofrio Book 2013 Springer Science+Business Media New York 2013 Fokker-Plan

[復(fù)制鏈接]
樓主: GERM
11#
發(fā)表于 2025-3-23 11:36:29 | 只看該作者
https://doi.org/10.1007/978-1-4684-3375-3quare and in the almost sure sense. Solution for a strongly nonlinear system with impacts had also been obtained illustrating potentially strong influence of imperfect periodicity of excitation on response subharmonics. Examples of application from engineering mechanics are presented.
12#
發(fā)表于 2025-3-23 16:04:05 | 只看該作者
13#
發(fā)表于 2025-3-23 21:13:41 | 只看該作者
14#
發(fā)表于 2025-3-24 00:32:02 | 只看該作者
15#
發(fā)表于 2025-3-24 04:44:36 | 只看該作者
16#
發(fā)表于 2025-3-24 07:00:31 | 只看該作者
Dynamics of Systems with Randomly Disordered Periodic Excitationsquare and in the almost sure sense. Solution for a strongly nonlinear system with impacts had also been obtained illustrating potentially strong influence of imperfect periodicity of excitation on response subharmonics. Examples of application from engineering mechanics are presented.
17#
發(fā)表于 2025-3-24 12:06:37 | 只看該作者
18#
發(fā)表于 2025-3-24 17:39:35 | 只看該作者
Spatiotemporal Bounded Noises and Their Application to the Ginzburg–Landau Equationandau time-varying model additively perturbed by such noises. The observed phase transitions phenomenology is quite different from the one observed when the perturbations are unbounded. In particular, we observed inverse “order-to-disorder” transitions, and reentrant transitions, with dependence on the specific type of bounded noise.
19#
發(fā)表于 2025-3-24 21:08:57 | 只看該作者
Bounded Stochastic Perturbations May Induce Nongenetic Resistance to Antitumor Chemotherapyt the tumor volume during therapy can undergo transitions to the higher equilibrium value induced by a bounded noise perturbing various biologically well-defined parameters. Finally, we propose to interpretate the above phenomena as a new kind of resistance to chemotherapy.
20#
發(fā)表于 2025-3-24 23:45:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黔东| 彰化市| 鸡东县| 镇巴县| 北票市| 会同县| 临安市| 镇江市| 修武县| 柏乡县| 隆化县| 通州市| 安多县| 西丰县| 剑川县| 钦州市| 宕昌县| 镶黄旗| 建宁县| 司法| 米林县| 清远市| 香港| 辉南县| 滦南县| 剑川县| 湟中县| 武宁县| 通渭县| 彩票| 杭锦后旗| 南华县| 长白| 温州市| 聂拉木县| 卢龙县| 博湖县| 塘沽区| 宁海县| 黑龙江省| 通江县|