找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Boundary-Layer Theory; Herrmann Schlichting,Klaus Gersten Book 2000Latest edition Springer-Verlag Berlin Heidelberg 2000 Dissipation.Navie

[復(fù)制鏈接]
樓主: Diverticulum
31#
發(fā)表于 2025-3-26 23:06:55 | 只看該作者
https://doi.org/10.1007/978-3-662-25370-0The examples of solutions of the boundary-layer equations treated up until now have been those for steady flows. Although it is steady flows which are by far of greatest importance in practical applications, in this chapter we will treat some cases of boundary layers which vary in time, that is, unsteady boundary layers.
32#
發(fā)表于 2025-3-27 02:00:09 | 只看該作者
33#
發(fā)表于 2025-3-27 08:58:37 | 只看該作者
General Properties and Exact Solutions of the Boundary—Layer Equations for Plane FlowsBefore further examples of the calculation of boundary layers are treated in the next chapter, some general properties of boundary-layer equations will be discussed. We will confine ourselves to steady, two-dimensional, incompressible boundary layers.
34#
發(fā)表于 2025-3-27 10:11:45 | 只看該作者
Approximate Methods for Solving the Boundary-Layer Equations for Steady Plane FlowsIn order to calculate the flow in the boundary layer, in general partial differential equations must by solved. Today there are many very effective and precise numerical methods available, as will be shown in Chap. 23.
35#
發(fā)表于 2025-3-27 13:50:17 | 只看該作者
Axisymmetric and Three-Dimensional Boundary LayersIn the previous chapters, the calculation of boundary layers was restricted to the plane case, where the two velocity components depended only on two spatial coordinates. There was no velocity component present in the direction of the third spatial coordinate.
36#
發(fā)表于 2025-3-27 19:01:13 | 只看該作者
37#
發(fā)表于 2025-3-27 21:59:52 | 只看該作者
38#
發(fā)表于 2025-3-28 04:25:50 | 只看該作者
39#
發(fā)表于 2025-3-28 08:40:43 | 只看該作者
Exact Solutions of the Navier-Stokes Equationsse of the principle of superposition which served so well in the case of inviscid incompressible potential flows. In spite of this, there are some special cases where exact solutions can be given, and this is most often true when the nonlinear inertial terms vanish in a natural way.
40#
發(fā)表于 2025-3-28 12:09:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 05:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
甘肃省| 锦州市| 德令哈市| 扎鲁特旗| 鄂托克前旗| 抚顺县| 丹凤县| 新民市| 社旗县| 北辰区| 和顺县| 安新县| 舟山市| 河西区| 萨迦县| 襄汾县| 金阳县| 浪卡子县| 饶平县| 鸡东县| 应城市| 屯昌县| 百色市| 罗田县| 土默特右旗| 许昌市| 盐城市| 绥阳县| 谢通门县| 赣州市| 迁安市| 长沙县| 昔阳县| 赤水市| 鸡东县| 定日县| 察隅县| 寿光市| 涪陵区| 淮阳县| 城步|