找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boundary Value Problems in Abstract Kinetic Theory; William Greenberg,Cornelis Mee,Vladimir Protopopes Book 1987 Springer Basel AG 1987 Ar

[復(fù)制鏈接]
樓主: LANK
11#
發(fā)表于 2025-3-23 12:03:15 | 只看該作者
Low-Voltage Low-Power CMOS Current Conveyors will be appropriate Borel measures on the parts D. of ?Λ corresponding to the outgoing (resp. incoming) “fluxes”, J and K are bounded linear operators defined on L. (Λ,dμ) and from L.(D.,dυ.) into L.(D.,dυ.), respectively, and h(x,ξ) is a nonnegative Lebesgue measurable function on Λ that is integr
12#
發(fā)表于 2025-3-23 16:49:43 | 只看該作者
13#
發(fā)表于 2025-3-23 22:05:16 | 只看該作者
Boundary Value Problems in Abstract Kinetic Theory
14#
發(fā)表于 2025-3-23 22:37:46 | 只看該作者
15#
發(fā)表于 2025-3-24 05:58:08 | 只看該作者
16#
發(fā)表于 2025-3-24 08:42:26 | 只看該作者
17#
發(fā)表于 2025-3-24 13:21:42 | 只看該作者
18#
發(fā)表于 2025-3-24 18:50:16 | 只看該作者
Semigroup Factorization and Reconstruction,ction we will outline the classical method for solving Wiener-Hopf equations on a half line. This will reduce the half space problem to a factorization problem. In the second section we shall study the connection between the semigroups developed in Chapters II and III and the solution of convolution
19#
發(fā)表于 2025-3-24 21:40:05 | 只看該作者
Albedo Operators, H-Equations and Representation of Solutions, of partial range boundary data. In this section we shall construct, under the general assumptions of Section VII.2, the albedo operator in terms of certain special functions. These functions generalize the H-functions, which were first extensively studied by Chandrasekhar [89].
20#
發(fā)表于 2025-3-24 23:24:30 | 只看該作者
Applications of the Stationary Theory,m that is plane parallel and invariant under arbitrary translations in horizontal directions. Although one excludes in this way processes such as zodiacal light where the light is incident at small angle with the planetary surface, it permits the study of the most important radiative phenomena.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 12:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福清市| 双辽市| 松潘县| 瑞丽市| 旌德县| 绥化市| 皮山县| 旅游| 雅江县| 依安县| 平陆县| 遂溪县| 胶州市| 舟曲县| 长葛市| 天水市| 周口市| 鹤庆县| 道孚县| 化州市| 武陟县| 凌云县| 雷波县| 玉树县| 德江县| 湟源县| 关岭| 江阴市| 潼关县| 石河子市| 博罗县| 汝州市| 汶上县| 伊金霍洛旗| 嘉禾县| 确山县| 阜宁县| 南投县| 东丰县| 景洪市| 会理县|