找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boundary Stabilization of Parabolic Equations; Ionu? Munteanu Book 2019 Springer Nature Switzerland AG 2019 Parabolic Partial Differential

[復制鏈接]
樓主: 空隙
11#
發(fā)表于 2025-3-23 12:04:15 | 只看該作者
12#
發(fā)表于 2025-3-23 15:14:21 | 只看該作者
13#
發(fā)表于 2025-3-23 21:59:13 | 只看該作者
Stabilization of Abstract Parabolic Equations,s we will see, these features will enable us to obtain the first results to appear in the literature regarding the stabilization of different equations, such as the stochastic heat equation, the Chan–Hilliard equations, and for boundary stabilization to nonsteady states for parabolic-type equations.
14#
發(fā)表于 2025-3-24 01:00:36 | 只看該作者
15#
發(fā)表于 2025-3-24 02:34:29 | 只看該作者
https://doi.org/10.1007/978-94-6091-648-9ar parabolic-like equations, namely equations for which their linear parts are generated by analytic .-semigroups. In what follows, we will simply refer to them as parabolic equations, in concordance with the title of this book. The feedback law’s main features are that it is expressed in an explici
16#
發(fā)表于 2025-3-24 09:50:37 | 只看該作者
17#
發(fā)表于 2025-3-24 14:25:14 | 只看該作者
18#
發(fā)表于 2025-3-24 15:57:39 | 只看該作者
https://doi.org/10.1007/978-94-6209-992-0ion at previous times. More exactly, we consider in the model aftereffect phenomena by adding a memory term. Engineers conclude that actuators, sensors that are involved in feedback control, introduce, in addition, delays into the system. That is why from the control engineering point of view it is
19#
發(fā)表于 2025-3-24 22:54:20 | 只看該作者
20#
發(fā)表于 2025-3-25 00:39:54 | 只看該作者
https://doi.org/10.1007/978-94-6300-818-1btained from the linearization of the equation around the trajectory is time-dependent, so its spectrum is time-dependent as well. This means that the spectral method leaves out this case. We will follow the approach from Sect. ., Chap.?7. Namely, we will write the solution of the nonlinear equation
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 05:25
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
喀喇沁旗| 万源市| 阿克陶县| 南川市| 沛县| 澎湖县| 贵阳市| 太湖县| 崇州市| 宁阳县| 巧家县| 渝中区| 涪陵区| 孟津县| 宜春市| 上饶市| 凤阳县| 陈巴尔虎旗| 浠水县| 文安县| 凤翔县| 永安市| 壤塘县| 松溪县| 肇庆市| 阳谷县| 白沙| 佛冈县| 宣汉县| 阳曲县| 砚山县| 静安区| 肥乡县| 海丰县| 金阳县| 夏河县| 抚顺县| 剑河县| 维西| 宁远县| 苍溪县|