找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boundary Physics and Bulk-Boundary Correspondence in Topological Phases of Matter; Abhijeet Alase Book 2019 Springer Nature Switzerland AG

[復制鏈接]
樓主: supplementary
11#
發(fā)表于 2025-3-23 12:03:09 | 只看該作者
Abhijeet AlaseNominated as an outstanding PhD thesis by Dartmouth College.Deepens understanding of topological phases via the bulk-boundary correspondence.Describes a generalization of Bloch‘s theorem and its appli
12#
發(fā)表于 2025-3-23 17:36:21 | 只看該作者
13#
發(fā)表于 2025-3-23 20:57:57 | 只看該作者
14#
發(fā)表于 2025-3-24 00:47:29 | 只看該作者
15#
發(fā)表于 2025-3-24 02:32:07 | 只看該作者
Book 2019ver translational symmetry is broken solely due to arbitrary boundary conditions. The thesis begins with a historical overview of topological condensed matter physics, placing the work in context, before introducing the generalized form of Bloch‘s Theorem. A cornerstone of electronic band structure
16#
發(fā)表于 2025-3-24 09:26:51 | 只看該作者
17#
發(fā)表于 2025-3-24 12:11:09 | 只看該作者
J. S. Rimmer,B. Hamilton,A. R. Peakerondence. We spell out the connections of the generalized Bloch theorem with the well-known transfer matrix method. We discuss how higher-dimensional systems and interfaces can be analyzed by extending generalized Bloch theorem.
18#
發(fā)表于 2025-3-24 16:11:17 | 只看該作者
,Generalization of Bloch’s Theorem to Systems with Boundary,ondence. We spell out the connections of the generalized Bloch theorem with the well-known transfer matrix method. We discuss how higher-dimensional systems and interfaces can be analyzed by extending generalized Bloch theorem.
19#
發(fā)表于 2025-3-24 20:48:55 | 只看該作者
2190-5053 .Describes a generalization of Bloch‘s theorem and its appli.This thesis extends our understanding of systems of independent electrons by developing a generalization of Bloch’s Theorem which is applicable whenever translational symmetry is broken solely due to arbitrary boundary conditions. The thes
20#
發(fā)表于 2025-3-25 02:31:26 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 07:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
井冈山市| 安远县| 斗六市| 定远县| 韶山市| 高清| 新邵县| 博兴县| 黄骅市| 怀仁县| 中卫市| 阳朔县| 丰镇市| 温州市| 曲麻莱县| 璧山县| 婺源县| 望都县| 万源市| 东乌| 万载县| 泰州市| 虎林市| 连山| 连城县| 车险| 土默特左旗| 四子王旗| 盐池县| 濮阳市| 荔波县| 苏尼特左旗| 华阴市| 通渭县| 阳泉市| 南召县| 安徽省| 海南省| 甘孜县| 观塘区| 监利县|