找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boosted Statistical Relational Learners; From Benchmarks to D Sriraam Natarajan,Kristian Kersting,Jude Shavlik Book 2014 The Author(s) 2014

[復(fù)制鏈接]
樓主: broach
21#
發(fā)表于 2025-3-25 06:40:34 | 只看該作者
22#
發(fā)表于 2025-3-25 09:58:24 | 只看該作者
23#
發(fā)表于 2025-3-25 13:55:30 | 只看該作者
24#
發(fā)表于 2025-3-25 19:53:34 | 只看該作者
Introduction: Where Is Nordic Noir?,ter, we discuss how this algorithm can be adapted to learn to act in sequential domains. We then present three of our most successful applications in real health care data—two cardiovascular prediction problems and the third is prediction of onset of Alzheimer’s disease. We then conclude the chapter
25#
發(fā)表于 2025-3-25 20:34:25 | 只看該作者
26#
發(fā)表于 2025-3-26 01:00:20 | 只看該作者
https://doi.org/10.1007/978-3-030-13585-0 of these formulations is that they can succinctly represent probabilistic dependencies among the attributes of different related objects, leading to a compact representation of learned models. Most of these methods essentially use first-order logic to capture domain knowledge and soften the rules u
27#
發(fā)表于 2025-3-26 07:41:21 | 只看該作者
Book 2014context and well-tested applications, Boosting Statistical Relational Learning from Benchmarks to Data-Driven Medicine is designed for researchers and professionals in machine learning and data mining. Computer engineers or students interested in statistics, data management, or health informatics wi
28#
發(fā)表于 2025-3-26 11:51:30 | 只看該作者
Introduction, of these formulations is that they can succinctly represent probabilistic dependencies among the attributes of different related objects, leading to a compact representation of learned models. Most of these methods essentially use first-order logic to capture domain knowledge and soften the rules u
29#
發(fā)表于 2025-3-26 16:12:57 | 只看該作者
Book 2014thods. These methods combine the expressiveness of first-order logic and the ability of probability theory to handle uncertainty. It provides an overview of the methods and the key assumptions that allow for adaptation to different models and real world applications.The models are highly attractive
30#
發(fā)表于 2025-3-26 19:57:43 | 只看該作者
2191-5768 al Statistical Relational Learning (SRL) methods. These methods combine the expressiveness of first-order logic and the ability of probability theory to handle uncertainty. It provides an overview of the methods and the key assumptions that allow for adaptation to different models and real world app
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 05:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安仁县| 香港 | 牟定县| 和顺县| 化德县| 定西市| 尉犁县| 永济市| 淮安市| 毕节市| 双辽市| 蒙自县| 五大连池市| 台东市| 建始县| 桐城市| 岳阳市| 枣阳市| 玛沁县| 农安县| 曲阜市| 华亭县| 迁安市| 霸州市| 牡丹江市| 宝兴县| 大同县| 铁岭市| 太仓市| 诏安县| 池州市| 溧水县| 通许县| 安龙县| 兴海县| 白银市| 肥乡县| 景泰县| 蒲江县| 长治市| 库尔勒市|