找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boosted Statistical Relational Learners; From Benchmarks to D Sriraam Natarajan,Kristian Kersting,Jude Shavlik Book 2014 The Author(s) 2014

[復(fù)制鏈接]
樓主: broach
21#
發(fā)表于 2025-3-25 06:40:34 | 只看該作者
22#
發(fā)表于 2025-3-25 09:58:24 | 只看該作者
23#
發(fā)表于 2025-3-25 13:55:30 | 只看該作者
24#
發(fā)表于 2025-3-25 19:53:34 | 只看該作者
Introduction: Where Is Nordic Noir?,ter, we discuss how this algorithm can be adapted to learn to act in sequential domains. We then present three of our most successful applications in real health care data—two cardiovascular prediction problems and the third is prediction of onset of Alzheimer’s disease. We then conclude the chapter
25#
發(fā)表于 2025-3-25 20:34:25 | 只看該作者
26#
發(fā)表于 2025-3-26 01:00:20 | 只看該作者
https://doi.org/10.1007/978-3-030-13585-0 of these formulations is that they can succinctly represent probabilistic dependencies among the attributes of different related objects, leading to a compact representation of learned models. Most of these methods essentially use first-order logic to capture domain knowledge and soften the rules u
27#
發(fā)表于 2025-3-26 07:41:21 | 只看該作者
Book 2014context and well-tested applications, Boosting Statistical Relational Learning from Benchmarks to Data-Driven Medicine is designed for researchers and professionals in machine learning and data mining. Computer engineers or students interested in statistics, data management, or health informatics wi
28#
發(fā)表于 2025-3-26 11:51:30 | 只看該作者
Introduction, of these formulations is that they can succinctly represent probabilistic dependencies among the attributes of different related objects, leading to a compact representation of learned models. Most of these methods essentially use first-order logic to capture domain knowledge and soften the rules u
29#
發(fā)表于 2025-3-26 16:12:57 | 只看該作者
Book 2014thods. These methods combine the expressiveness of first-order logic and the ability of probability theory to handle uncertainty. It provides an overview of the methods and the key assumptions that allow for adaptation to different models and real world applications.The models are highly attractive
30#
發(fā)表于 2025-3-26 19:57:43 | 只看該作者
2191-5768 al Statistical Relational Learning (SRL) methods. These methods combine the expressiveness of first-order logic and the ability of probability theory to handle uncertainty. It provides an overview of the methods and the key assumptions that allow for adaptation to different models and real world app
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 09:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临沧市| 汤原县| 河南省| 昆明市| 双牌县| 茂名市| 保靖县| 札达县| 曲周县| 伊宁市| 阿拉善盟| 鹰潭市| 车险| 宝坻区| 绥江县| 大余县| 墨江| 柞水县| 湟中县| 金乡县| 勐海县| 洛阳市| 巴彦淖尔市| 同心县| 南昌市| 巧家县| 乳源| 石阡县| 阿克陶县| 江安县| 旌德县| 胶州市| 红河县| 隆安县| 陈巴尔虎旗| 桃江县| 弥勒县| 扬州市| 溧水县| 保康县| 灵寿县|