找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bohmian Mechanics, Open Quantum Systems and Continuous Measurements; Antonio B. Nassar,Salvador Miret-Artés Book 2017 Springer Internation

[復(fù)制鏈接]
樓主: clot-buster
21#
發(fā)表于 2025-3-25 03:24:54 | 只看該作者
https://doi.org/10.1007/978-3-322-91664-8ling dynamics through a barrier, the plasma fluid formulation and the Lorentz–Abraham (extended electron) equation for a point-charge electron. These two last examples are also discussed in order to see the correspondence between classical and quantum dynamics. Very few applications of this SL equat
22#
發(fā)表于 2025-3-25 11:13:02 | 只看該作者
Koda: Diskurs elektronischer Literatur?,on is equivalent to a master equation, a special case of the Linblad equation, and to a stochastic Schr?dinger equation. Within the Kostin framework, a logarithmic nonlinear Schr?dinger equation is proposed and discussed by extending Mensky’s approach to be analyzed in terms of Bohmian trajectories,
23#
發(fā)表于 2025-3-25 14:01:12 | 只看該作者
24#
發(fā)表于 2025-3-25 18:12:09 | 只看該作者
25#
發(fā)表于 2025-3-25 23:55:49 | 只看該作者
Bohmian Stochastic Trajectories,of quantum mechanics, with the usual linear theory representing only a limiting case, or to describe open quantum systems. For the description of nonconservative quantum systems, Kostin formulated in an heuristic way the so-called Schr?dinger–Langevin (SL) equation or Kostin equation, for the Browni
26#
發(fā)表于 2025-3-26 01:56:14 | 只看該作者
Continuous Quantum Measurements in the Bohmian Framework, has been proposed by Mensky. The corresponding propagator is modified according to the information provided by the measurement through the so-called quantum corridors, which correspond to different readouts of the measurement. The measured system is also considered in this theory as an open system
27#
發(fā)表于 2025-3-26 06:06:05 | 只看該作者
8樓
28#
發(fā)表于 2025-3-26 12:31:20 | 只看該作者
8樓
29#
發(fā)表于 2025-3-26 16:27:02 | 只看該作者
9樓
30#
發(fā)表于 2025-3-26 20:31:35 | 只看該作者
9樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 08:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜丰县| 林口县| 泰来县| 板桥市| 新余市| 平遥县| 铁岭县| 石柱| 三江| 漯河市| 阿勒泰市| 铜陵市| 沈阳市| 清原| 靖远县| 嘉兴市| 合水县| 霍林郭勒市| 布尔津县| 额敏县| 饶平县| 和平区| 沁阳市| 宜君县| 怀仁县| 开江县| 静海县| 玛沁县| 东乌珠穆沁旗| 赤峰市| 漳浦县| 正安县| 喀喇| 乃东县| 综艺| 皋兰县| 建阳市| 玉屏| 鲜城| 眉山市| 龙江县|