找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Block Designs: A Randomization Approach; Volume II: Design Tadeusz Caliński,Sanpei Kageyama Book 2003 Springer-Verlag New York, Inc. 2003 V

[復(fù)制鏈接]
樓主: Ingrown-Toenail
11#
發(fā)表于 2025-3-23 09:58:37 | 只看該作者
12#
發(fā)表于 2025-3-23 13:58:38 | 只看該作者
978-0-387-95470-7Springer-Verlag New York, Inc. 2003
13#
發(fā)表于 2025-3-23 21:23:27 | 只看該作者
14#
發(fā)表于 2025-3-24 01:01:58 | 只看該作者
15#
發(fā)表于 2025-3-24 04:32:29 | 只看該作者
https://doi.org/10.1007/978-3-531-91041-3f treatment parameters. In the terminology introduced in Chapter 4 (Section 4.4) and recalled at the beginning of Chapter 6, this means that various cases of (.;.,…,.; 0)-EB designs, with . = 1,2,3 and more, for which . ≥ 1, will be of interest. The chapter begins with a general consideration on suc
16#
發(fā)表于 2025-3-24 10:26:45 | 只看該作者
Lernübertragungen in der Sportp?dagogik. Taking into account the practical point of view, the cases of (0;.,.,…,.;0)-EB designs, with . = 2, 3 and more, will be considered. At first, a general consideration on such designs is presented in Section 8.1, by recalling relevant results discussed in Volume I and by providing some corresponding
17#
發(fā)表于 2025-3-24 12:15:19 | 只看該作者
https://doi.org/10.1007/978-3-0348-6505-0eplicates one or more at a time. The present chapter is devoted only to those among (α,α., …,α.)-resolvable block designs which are a-resolvable for α ≥ 1, according to the concepts discussed in Section 6.0.3. A 1-resolvable block design is simply called resolvable in the usual sense of Bose (1942a)
18#
發(fā)表于 2025-3-24 15:24:24 | 只看該作者
19#
發(fā)表于 2025-3-24 19:21:40 | 只看該作者
https://doi.org/10.1007/978-3-531-91041-3roper and nonequireplicate, (iii) nonproper and equireplicate and (iv) nonproper and nonequireplicate, first for . = 1 (Section 7.2), then for . = 2 (Section 7.3), then for . = 3 (Section 7.4), and finally for . ≥ 3 (Section 7.5).
20#
發(fā)表于 2025-3-25 02:55:14 | 只看該作者
Designs with Full Efficiency for Some Contrasts,roper and nonequireplicate, (iii) nonproper and equireplicate and (iv) nonproper and nonequireplicate, first for . = 1 (Section 7.2), then for . = 2 (Section 7.3), then for . = 3 (Section 7.4), and finally for . ≥ 3 (Section 7.5).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 10:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
翼城县| 台东市| 万盛区| 阳春市| 大足县| 龙里县| 沅陵县| 厦门市| 西平县| 化隆| 宁武县| 石河子市| 叙永县| 苏尼特右旗| 阜宁县| 游戏| 迭部县| 九江市| 大足县| 保靖县| 托克托县| 普格县| 万山特区| 弥渡县| 娱乐| 偃师市| 衡阳县| 荔波县| 桐柏县| 常州市| 临安市| 天长市| 沙洋县| 忻城县| 岳阳县| 福州市| 光山县| 邵东县| 高邮市| 安宁市| 色达县|